

DARPA Overview & Data Driven Discovery of Models (D³M)

Wade Shen I2O Program Manager

Brian Sandberg I20 Technical SETA

Approved for Public Release, Distribution Unlimited

DARPA Technical Offices

Goal:

Automate (many of) the methods in data science to create empirical models of real, complex processes

- Enable non-expert users to make predictions from data without the need for data scientists
- Provide expert data scientists with automation that allow them to focus on the hard parts of the problem

D³M: Data-driven discovery of models

- Model: representation of a real-world system Examples
 - Inferring locations of images
 - Prediction of election outcomes
 - Estimation model for disease outbreaks
- Manual process: 10-1000s of person-years
- Teams of experts required to develop the model

- Automatically select problem-specific model primitives
 - Extend the library of modeling primitives
- Automatically compose complex models from primitives
- Facilitate user interaction with composed models

- Discover empirical models having complexity beyond current human comprehension
 - Humans can search only a tiny fraction of model space
 - Machines can search a much larger fraction much more rapidly
- Fast, automated model discovery enables:
 - Accelerated scientific discovery
 - Rapid intelligence analysis w/o embedded data scientists

	Cost (Person-months)		Avg. time to solution (Months)	
Year	As-performed	with D ³ M (estimated) As-performed	with D ³ M (estimated)	
2009	432	4	24	0.5
2009-2011	126	5	18	0.25
2014-2015	102	3	6	0.25
2015-2016	83	4	5	1

Average cost of model construction per analytical problem posed to Nexus 7, XDATA, Memex and QCR

Automated discovery of complex models with non-expert curation

- TA1: Discover and develop model primitives
 - Create a "vocabulary" of modeling primitives
 - Make primitives automatically discoverable
- TA2: Automatically compose complex models
 - Mine corpora of complex models to learn the "syntax" of primitive composition
 - Find optimal compositions
 - Predict additional data requirements
- TA3: Curation of models by non-experts
 - Decompose questions
 - Explain data and models to enable selection and editing

DARPA Evaluation metrics

TA1: Measure efficiency of predicting primitives

Protocol	Metric
Predict primitives; experts compose	Δ error of predicted primitives vs. optimal

TA2: Measure (re)discovery of optimal analyses/models

Protocol	Metric
Synthesize models compare to experts	Δ error of D ³ M model vs. expert models

TA3: Human curation of models

Protocol	Metric
Decompose questions, compare with experts	P_d/P_{fa} of automated vs. expert (ROC)
Compare decisions made by experts with lay users	Δ error of analyst vs. data scientist inthe-loop

Program-level evaluation (annual integration and evaluation)

Protocol	Metric
TA1-3 form team, work with non-experts to build model, compare with experts	Δ error of D ³ M model vs. expert model

Phase 1: Reproduce/improve models for existing problems without a data scientist

Problem	Example	Pre-D ³ M Effort (1 st – Opt.)	D ³ M Effort
1. Simple social/bio-med problems Linear/categorical models, flat hierarchy, structured data	Smoking Factors, genetic species classification	2-200 hrs (data science)	0.5-2 hrs (SME)
2. Multi-source prediction problems Multi-fused models, complex hierarchy, mixed data	Netflix Prize, Kaggle- PTSD, XDATA problems	2000-15000 hrs (data science)	1-10 hrs (SME)

Phase 2: Synthesize models for unsolved problems, propose data augmentation

Problem classes	Examples	D ³ M Effort
1. Multi-modal predictive models with supplied data	Predict political instability or uprising, riot, conflict, donations to terrorist groups; predict causors/spread of disease; capabilities prediction from designs; optimize manufacturing process (OM)	5-40 hrs (SME)
2. Multi-modal predictive models with automated data collection	Multi-player games predict strategy/team formation, market/GDP forecasting, weather/ecology/environmental interaction, genetic factors for disease, predict mass shooting events	30-100 hrs (SME)

