Causality in Statistics Education Award


2014 Winners


Laura B. Balzer, University of California at Berkeley          Maya Petersen, University of California at Berkeley

To Maya Petersen and Laura B. Balzer for developing a path-blazing course "Introduction to Causal Inference" at the University of California, Berkeley.

The ASA is proud to announce a new prize, Causality in Statistics Education, aimed at encouraging the teaching of basic causal inference in introductory statistics courses.

The prize carries a monetary award of $5,000 per year. Donated by Judea Pearl, the prize is motivated by the growing importance of introducing core elements of causal inference into undergraduate and lower-division graduate classes in statistics. For additional information about the award, see the Amstat News articles at magazine.amstat.org/blog/2012/11/01/pearl/ and http://magazine.amstat.org/blog/2013/08/01/causality-in-stat-edu/.

The prize will be given by the ASA in 2013, 2014, and 2015 to a person or team that does the most to enhance the teaching and learning of causal inference in statistics. Winners will be announced on or about May 1 each year and presented with the prize at the Joint Statistical Meetings.

The committee is pleased to announce that a gift from Microsoft Research will enable the prize to double in 2014. A $10,000 prize or two $5,000 prizes will awarded this year.

Winners will be selected by the members of the prize committee, who will administer submissions and judge their merit according to the following criteria:

  • The extent to which the material submitted equips students with skills needed for effective causal reasoning. These include:

    • 1a. Ability to correctly classify problems, assumptions, and claims into two distinct categories: causal vs. associational


    • 1b. Ability to take a given causal problem and articulate in some mathematical language (e.g., counterfactuals, equations, or graphs) both the target quantity to be estimated and the assumptions one is prepared to make (and defend) to facilitate a solution


    • 1c. Ability to determine, in simple cases, whether control for covariates is needed for estimating the target quantity, what covariates need be controlled, what the resulting estimand is, and how it can be estimated using the observed data


    • 1d. Ability to take a simple scenario (or model), determine whether it has statistically testable implications, and apply data to test the assumed scenario

  • The extent to which the submitted material assists statistics instructors in gaining an understanding of the basics of causal inference (as outlined in 1a-d) and prepares them to teach these basics in undergraduate and lower-division graduate classes in statistics.

Nominated material can be in a variety of forms, including exemplary content such as class notes, books, or chapters with associated lesson plans; excellent resources for teachers such as annotated instruction manuals; or innovative student activities with pedagogical and content notes, especially those using broadly accessible technology.

The deadline for submission is April 15. Submissions should include a cover letter that provides information about the nominee, type of material suggested as an important contribution, the intended audience, and an abstract of why the material is nominated, along with the nominated work. Submissions and questions should be sent to the ASA office at educinfo@amstat.org.

Prize Committee
Dennis Pearl (Ohio State University, CAUSE, co-chair)
Judea Pearl (University of California, Los Angeles, co-chair)
Felix Elwert (University of Wisconsin-Madison)
Daniel Kaplan (Macalester College)
Michael Posner (Villanova University)
Larry Wasserman (Carnegie Mellon University)


Past Winners


2013: Felix Elwert, University of Wisconsin-Madison, for his innovative two-day course, Causal Inference with Directed Acyclic Graphs.


Past Honorable Mentions


2013: Tyler VanderWeele, Harvard School of Public Health, for his class, Methods for Mediation and Interaction.

2013: Richard Scheines and (the late) Steven Klepper of Carnegie Mellon University for their course, Empirical Research Methods for the Social Sciences.