Goals for Students in an Introductory Course: What it Means to be Statistically Educated

Some people teach courses that are heavily slanted toward teaching students to become statistically literate and wise consumers of data; this is somewhat similar to an art appreciation course. Some teach courses more heavily slanted toward teaching students to become producers of statistical analyses; this is analogous to the studio art course. Most courses are a blend of consumer and producer components, but the balance of that mix will determine the importance of each recommendation we present.

The desired result of all introductory statistics courses is to produce statistically educated students, which means that students should develop statistical literacy and the ability to think statistically. The following goals represent what such a student should know and understand. Achieving this knowledge will require learning some statistical techniques, but the specific techniques are not as important as the knowledge that comes from going through the process of learning them. Therefore, we are not recommending specific topical coverage.

Students should believe and understand why:

- Data beat anecdotes
- Variability is natural, predictable, and quantifiable
- Random sampling allows results of surveys and experiments to be extended to the population from which the sample was taken
- Random assignment in comparative experiments allows cause-and-effect conclusions to be drawn
- Association is not causation
- Statistical significance does not necessarily imply practical importance, especially for studies with large sample sizes
Finding no statistically significant difference or relationship does not necessarily mean there is no difference or no relationship in the population, especially for studies with small sample sizes.

Students should recognize:

- Common sources of bias in surveys and experiments
- How to determine the population to which the results of statistical inference can be extended, if any, based on how the data were collected
- How to determine when a cause-and-effect inference can be drawn from an association based on how the data were collected (e.g., the design of the study)
- That words such as “normal,” “random,” and “correlation” have specific meanings in statistics that may differ from common usage.

Students should understand the parts of the process through which statistics works to answer questions, namely:

- How to obtain or generate data
- How to graph the data as a first step in analyzing data, and how to know when that’s enough to answer the question of interest
- How to interpret numerical summaries and graphical displays of data—both to answer questions and to check conditions (to use statistical procedures correctly)
- How to make appropriate use of statistical inference
- How to communicate the results of a statistical analysis

Students should understand the basic ideas of statistical inference, including:

- The concept of a sampling distribution and how it applies to making statistical inferences based on samples of data (including the idea of standard error)
- The concept of statistical significance, including significance levels and p-values
- The concept of confidence interval, including the interpretation of confidence level and margin of error
Finally, students should know:

- How to interpret statistical results in context
- How to critique news stories and journal articles that include statistical information, including identifying what’s missing in the presentation and the flaws in the studies or methods used to generate the information
- When to call for help from a statistician