
Assessing The Reliability of Statistical Software: Part I
B. D. MCCULLOUGH

Entry-level tests of the accuracy of statistical software, such
as Wilkinson’s Statistics Quiz, have long been available, but
more advanced collections of tests have not. This article
proposes a set of intermediate-level tests focusing on three
areas: estimation, both linear and nonlinear; random number
generation; and statistical distributions (e.g., for calculating
p-values). The complete methodology is described in de-
tail. Convenient methods for summarizing the results are
presented, so that an assessment of numerical accuracy can
easily be incorporated into a software review.

KEY WORDS: Accuracy; Benchmarks; Random number
generator; Software testing; StRD.

1. INTRODUCTION

Familiar to all is the tale of the researcher who solves
the same problem using two software packages and obtains
two different results. Of course the researcher has no idea
which result, if either, is correct. Barring further inquiry,
the output of neither package can be considered reliable. A
second researcher who solved the problem using only one
of the two packages would have no such doubts about the
accuracy of the results, this researcher’s blissful ignorance
relying on (1) the software vendor’s assurance that every
effort has been made to verify the accuracy of the program
and (2) the fact that no review of the software had ever men-
tioned any problem with accuracy. Relying upon the ven-
dor’s assurance and the reviewer’s thoroughness amounts
to a willful suspension of disbelief.

With respect to vendor assurances, the existence of well-
known benchmarks for simple statistical procedures and the
failure of many programs to pass these tests suggests that
many vendors are not making an effort to verify the ac-
curacy of their programs. Consider calculating the sam-

B. D. McCullough is Senior Economist, Federal Communications Com-
mission, Washington, DC 20554 (E-mail:bmccullo@fcc.gov). Thanks to R.
Beardsley, R. Cavazos, C. Cummins, S. Hunka, W. J. Kennedy, L. Knusel,
P. L’Ecuyer, J. G. MacKinnon, G. Marsaglia, J. Prisbrey, B. D. Ripley, M.
R. Veall, and the referees, as well as to various persons who wish to remain
anonymous, for comments and useful suggestions. Special thanks are due
to M. Lovell, who commented extensively on early versions. The views
expressed herein are those of the author and do not necessarily reflect
those of the commission.

ple variance of three observations: 90000001, 90000002,
90000003 (the correct answer is unity). Because single pre-
cision is only accurate to six or seven digits, a single pre-
cision program with a good algorithm will fail this test. A
double precision program with a good algorithm will pass,
but with a bad algorithm can fail. An extended precision
program with a bad algorithm might pass, but in such a
case the extended precision does not deliver evidence of
more accurate software—it only hides poor programming.
The purpose of benchmarking is to assess the quality of the
algorithms implemented, not to see how many registers can
be stacked.

Wilkinson and Dallal (1977) applied this test to several
mainframe statistical packages and found that many of them
failed. Even today some packages cannot pass this simple
test. A well-known collection of simple tests is Wilkinson’s
(1985) Statistics Quiz, which presents a set of problems de-
signed to uncover common flaws in statistical programs.
Wilkinson’s tests may be characterized as a collection of
entry-level tests, to be conducted before more serious tests
of numerical accuracy are applied, and are discussed in de-
tail by Sawitzki (1994a). Sawitzki (1994b) applied these
tests to several statistical packages and no package passed
them all. Wilkinson (1994), Bankhofer and Hilbert (1997),
and McCullough (in press) also have applied Statistics Quiz
and documented many failures, including negative variances
and correlation coefficients greater than unity. The need for
benchmarking is clear.

Will reviewers alert readers to numerical inaccuracies?
No. A casual survey of software reviews published in statis-
tical journals attests to this. This stands in stark contrast to
the statistical profession’s long history of concern about the
reliability of its software, as evidenced by numerous books
and articles (e.g., Francis, Heiberger, and Velleman 1975;
Francis 1981; and Eddy, Howe, Ryan, Teitel, and Young
1991), various sessions of the COMPSTAT proceedings,
and the ASA Statistical Computing Section. In defense of
reviewers and software review editors, until recently there
has been no authoritative or comprehensive source available
to reviewers. In the absence of such a source, editors could
not insist that reviewers address numerical accuracy. Re-
viewers, lacking such a source, rarely addressed numerical
accuracy. Exceptions such as Vinod (1989), Veall (1991),
and McCullough (1997) were limited in scope. Many users,
relying on reviewers to mention problems with software,
had no reason to question the accuracy of their software
since few of them used different packages to solve the same
problem.

358 The American Statistician, November 1998, Vol. 52, No. 4 c© 1998 American Statistical Association

Benchmarks do exist, though. In addition to Wilkin-
son’s tests, Lachenbruch (1983) published a suite of tests
for general statistical software on microcomputers, as did
Lesage and Simon (1985) and Elliott, Reisch, and Camp-
bell (1989). Simon and Lesage (1988, 1989) also presented
various benchmarks for univariate statistics and analysis of
variance. For linear regression there is the Wampler (1970)
suite of benchmarks and additional test problems (Wampler
1980), and the famous Longley (1967) benchmark. Long-
ley (1967) calculated by hand the coefficients to a linear
regression problem, and then compared his answer to those
provided by several mainframe linear regression programs.
He found that many programs produced coefficients that
were not accurate to more than one or two digits, and some
produced zero accurate digits. Although today most any re-
gression package can accurately compute the Longley coef-
ficients to several digits, passing one or even several bench-
marks is no assurance that the program is error-free. The
numerical accuracy of statistical and econometric software
cannot be taken for granted.

The above-mentioned benchmarks all are for linear pro-
cedures, and the lack of nonlinear benchmarks has fore-
stalled efforts to assess this crucial aspect of statistical soft-
ware. Recently, the National Institutes of Standards and
Technology (NIST) remedied this deficiency by compil-
ing benchmarks for over 20 nonlinear least squares prob-
lems. Adding these to existing benchmarks and refining
the latter, NIST produced the Statistical Reference Datasets
(StRD) website (http://www.nist.gov/itl/div898/strd). The
website has four suites of benchmarks: univariate summary
statistics, analysis of variance, linear regression, and non-
linear regression, with test data in ASCII format and “certi-
fied values” for the parameters which are accurate to several
digits.

Benchmarking is a time-consuming process, and most
users will not wish to spend the time checking their soft-
ware, preferring instead to read reviews which include an
assessment of numerical accuracy. However, the output
from benchmarking a single package is voluminous, requir-
ing more space than a journal can allocate to a survey, let
alone a software review. Presenting all of the output is im-
practical, as is merely reporting “pass” or “fail” for each
test. The output from the tests must be condensed, per-
haps to a single page, with discussion of the results and
anomalies encountered limited to one or two pages. Such
a method provides several advantages: first, it means that
assessing numerical reliability can be part of any software
review; second, it provides the reader with a summary of
the numerical strengths and weaknesses of a package; and
third, it facilitates comparison of packages.

Estimation is not the only aspect of statistical software
prone to numerical error. Both the random number genera-
tor (RNG) and the various statistical distributions (e.g., for
calculating p-values) typically are presented as black boxes:
the RNG will provide as many truly random numbers as a
user desires, and the output of a statistical distribution is
accurate to all displayed decimals, regardless of the input
parameters. Of course, these last two assertions are false.
Vendors rarely provide the algorithms underlying these pro-

cedures, let alone the limits within which they can safely
be relied upon or any evidence of their accuracy. There-
fore, both the RNG and the statistical distributions must be
assessed for reliability, or lack thereof.

Section 2 is a brief introduction to the limitations of a
computer’s numerical accuracy. Section 3 shows how to
measure the accuracy of a calculated number. Section 4
describes the four suites of tests in the NIST StRD web-
site. Section 5 discusses problems with RNGs and intro-
duces Marsaglia’s (1996) “DIEHARD Battery of Random-
ness Tests” for RNGs. Section 6 shows how to assess the
accuracy of statistical distributions. Section 7 offers a sum-
mary. In Part II, to appear in a future issue, the methodol-
ogy outlined here will be applied to three popular statistical
packages: SAS, SPSS, and S-Plus.

2. ERRORS IN NUMERICAL COMPUTATION

Computers generally commit two types of errors when
engaging in numerical computation, rounding error and
truncation error. [There are many definitions of trunca-
tion and roundoff error. The definitions given here follow
Higham (1996).] Part of the error inherent in numerical
computation is due to the computer’s binary representation
of numbers with finite precision. Each of these concepts
merits brief mention, more detailed accounts appearing in
Kennedy and Gentle (1980, chaps. 2–3), Thisted (1988,
chap. 2), Stewart (1996, chaps. 6–8), Gentle (1998a), and
the classic article by Goldberg (1991) which, despite its ti-
tle, is not just for computer scientists.

2.1 Binary Representation and Finite Precision

A computer represents numbers in binary form. The bi-
nary representation of the decimal .1 is .0001100110011,
where underline indicates an infinitely repeating sequence.
Computers, having finite precision, cannot represent an
infinite number of digits. Assume single precision (it is
easier than using double precision, and all the arguments
follow, mutatis mutandis). The computer represents num-
bers in binary form with 24 binary digits (exclusive of
leading zeroes) with a decimal somewhere. The single-
precision binary representation (spbr) of the decimal .1
is .00011001100110011001100110. Converting this binary
number back into decimal notation yields .099999964,
which is accurate to seven decimal places. This is what
the computer “sees” when the number .1 is entered. The
spbr of the number 100,000 is 11000011010100000.000000
which converts back into 100,000 exactly. Adding these two
numbers, it is apparent that only seven binary places to the
right of the decimal point are available to represent the dec-
imal .1, so the sum has spbr 11000011010100000.000110.
Reconverted to decimal, this number is not 100,000.1 but
100,000.09375, which is accurate only to two decimal
places. Thus, adding a number accurate to seven decimals
to an exact number produces a sum less accurate than either
of its summands. Moreover, subtracting away the large part
does not help, for in single precision the computer “sees”
(100, 000.1 − 100, 000.0) as .09375. This demonstrates that
for very large numbers which differ only in the decimals,

The American Statistician, November 1998, Vol. 52, No. 4 359

the computer might not be able to represent accurately the
differences between the numbers due to cancellation error.

2.2 Rounding Error

Rounding error is a function of hardware, and is primar-
ily due to finite precision—that is, a computer has only
so many bits with which to represent any number. For ex-
ample, by the IEEE-754 standard for computer arithmetic
which is implemented in the hardware of most every PC
and workstation and many mainframes, single precision has
about six or seven digits of accuracy, while double precision
has about 15 or 16 digits of accuracy. Both x = 1,000,000
and y = .000001 can be represented in single precision, but
their sum, z = x + y, cannot. In single precision the re-
sult will be z = 1,000,000 with the least significant digits
being lost to rounding error. In double precision, the sum
can be accurately represented, z = 1,000,000.000001. One
type of rounding error which merits mention is cancella-
tion error, which occurs when two nearly equal numbers
are subtracted from each other, leaving only the rightmost
digits, those most susceptible to rounding error. Successive
rounding errors in a series of calculations do not cancel
but, rather, accumulate, and the bound on the total error
is proportional to the number of calculations. Sometimes
this total error affects only the rightmost digits of the fi-
nal answer. Sometimes the total error can be so large as
to completely swamp the answer, resulting in no accurate
digits; many such examples will be provided in Part II.

Another consequence of finite precision and rounding
error is that two formulas, while algebraically equivalent,
might not be numerically equivalent. Consider the follow-
ing two formulas:

10000∑

n=1

n−2
10000∑

n=1

(10001 − n)−2

The former sums the numbers in ascending order, the latter
in descending order. In the latter method, the tiniest num-
bers are accurately represented and summed. In the former
method, by the time the tiniest numbers are reached, they
are all lost to rounding error when added to the existing
sum. In fact, the numerical error in the former is 650 times
greater than the error in the latter (Dahlquist and Björk
1974). Even with an infinite number of digits, which ef-
fectively eliminates rounding error, computers sometimes
produce only approximate answers due to truncation error.

2.3 Truncation and Algorithmic Error

Truncation error is a function of software, and may be
considered an approximation error. Iterative algorithms for
nonlinear least squares problems are subject to truncation
error, since the algorithm only yields the correct answer for
an infinite number of iterations, yet in practice the number
of iterations is finite. As a more concrete example, consider
calculating the sine of x, sin(x).

sin(x) = x − x3

3!
+

x5

5!
− x7

7!
+ · · · (1)

Clearly, the computer cannot carry the sum out to infinity,
and must stop summing after some finite number of terms,
k. Assuming infinite precision, the difference between the
true value of sin(x) and that achieved by summing k terms
is truncation error.

Yet another source of inaccuracy is the algorithm itself.
There can exist many different ways to compute a quan-
tity, and some are better than others. Ling (1974) analyzed
five different ways to calculate the sample variance, and
found that not all are equally reliable. The least accurate
of the five is the “calculator formula” often presented in
elementary statistical texts as a computational shortcut. As
an algorithm, this formula is known to be numerically un-
stable. Yet, it is possible to find software packages that use
this formula. Similarly, there are many ways to obtain the
least squares coefficients in a linear regression, for example
Gaussian elimination, the LU decomposition and the sin-
gular value decomposition (SVD). The former methods are
not robust to collinear data, while the SVD is; therefore the
SVD is the method of choice for solving linear least squares
problems (Hammarling 1985; Press, Teukolsky, Vetterling,
and Flannery 1992, p. 51), especially when the tradeoff be-
tween speed and accuracy is weighted 100% for accuracy
and 0% for speed.

[Note: The QR decomposition, while not as robust to
collinear data as the SVD, is more robust than the other
methods mentioned, and much faster than the SVD. Soft-
ware vendors, who must balance the various needs of di-
verse users, do well to implement the QR decomposition.
The present author admits that, when bootstrapping, he gen-
erally prefers the QR to the SVD.]

Roundoff, truncation, and algorithmic errors all can con-
taminate a computed solution, thus degrading accuracy. It
is useful to have some method for measuring the accuracy
of a computed solution, say, q, by comparing it to a known
or more reliably computed solution, say, c.

3. MEASURING ACCURACY

The significant digits in a number are the first nonzero
digit and all succeeding digits. Thus, 3.1415 has five sig-
nificant digits while .0012 has only two significant digits.
The number of correct significant digits, while seemingly
a very intuitive notion, actually is fraught with many pit-
falls (see Higham 1996, sec. 1.2 for details). An oft-used
measure of the number of correct significant digits, is the
base-10 logarithm of the relative error

LRE = − log10[|q − c|/|c|], (2)

where q is the estimated value and c is the correct value.
In the event that q = c exactly, LRE is undefined, in which
case it should be set equal to the number of digits in c.
In a some cases, as in the standard errors of some of the
linear regression benchmarks, the certified value is zero, so
that the LRE is undefined. In those instances, the base-10
logarithm of the absolute error should be used

LAR = − log10[|q|]. (3)

360 Statistical Computing Software Reviews

For expositional ease, in the sequel, no distinction will be
made between LRE and LAR, referring to both or either
as LRE. The symbol λ with an appropriate subscript will
denote the LRE of a computed quantity.

A fractional LRE has a specific interpretation: λq = 2.70
means that q agrees with the first 9 (≈ 2.7/ log10 2) bits of c.
Note that, as a function, the LRE is a measure of the number
of correct significant digits only when q is “close” to c. To
see this, let q = 165.89 and c = 2.7070; then LRE = 1.78.
Values of q far from c are not infrequent, especially for
nonlinear benchmarks. Therefore, each estimated quantity
must be compared to its certified value to make sure that
they differ by a factor of less than two; otherwise simply set
λq to zero. It is possible for an LRE to exceed the number
of digits in the c; for example, it is possible to calculate an
LRE of 11.4 even though c contains only 11 digits. In part,
this is because a double precision computer will “pad” the
11 digits with zeroes. Correcting for this is not worth the
effort, so in such a case λq should be set to the number of
digits in c. Finally, any λq less than unity should be set to
zero.

What LRE is acceptable varies from user to user, but for
coefficients from low-difficulty linear procedures it should
be at least nine. This is because a decent implementation of
a decent algorithm for a linear procedure should, with well-
behaved data, return 10 accurate digits in double precision.
This is not to suggest that users often need ten digits of
accuracy. Rather, the idea is that a program which cannot
deliver 10 digits of accuracy for an easy problem is more
likely to deliver inaccurate results in practice. Guidelines
for coefficients from nonlinear procedures are much less
clear, though four or five digits of accuracy does not appear
to be unreasonable.

4. THE NIST STRD BENCHMARKS

The StRD has four suites of benchmarks: univariate sum-
mary statistics, analysis of variance, linear regression, and
nonlinear regression. Clearly the benchmarks would be of
little value if all packages could solve them, or if no pack-
age could solve them. Within each suite, NIST has created
the problems according to level of difficulty: lower, aver-
age, and higher. For the linear problems, data were read in
and represented with 500 decimal digits of accuracy, as op-
posed to the usual double precision. Simple algorithms were
used to perform each analysis and 500 digits were carried
through all calculations using Bailey’s multiple precision
FORTRAN preprocessor and subroutine library (available
at NETLIB). The final 500-digit answer was rounded to 15

Table 1. Results of ANOVA Data Set AgWt

source df ss ms F

StRD
between 1 3.64E-09 3.64E-09 1.59467335677930E+01

within 46 1.05E–08 2.28E–10

Package X
between 1 3.61E–09 3.61E–09 1.5670329670329700E+00

within 46 1.06E–08 2.3E–10

significant digits. The nonlinear problems were solved using
quadruple precision (128 bits) and two public domain pro-
grams with different algorithms and different implementa-
tions; the convergence criterion was residual sum of squares
(RSS) and the tolerance was 1E–36. Certified values were
obtained by rounding the final solutions to 11 significant
digits. Each of the two public domain programs, using only
double precision, could achieve 10 digits of accuracy for ev-
ery problem. Complete information on problem selection,
difficulty rating, method of solution, and computational de-
tails can be found in Rogers et al. (1998). A brief description
of each suite follows.

4.1 Univariate Summary Statistics

This suite has nine data sets, with levels of difficulty six
lower, two average, and one higher, with the number of
observations ranging from 3 to 5,000. For each data set,
certified values to 15 digits are provided for the mean, µ;
the standard deviation, σ; the first-order autocorrelation co-
efficient, ρ. Since only three certified values are given, the
LRE for each can be presented, λµ, λs, and λρ.

The simplest or most obvious method should be used
to calculate each statistic. This corresponds to what a user
might do if seeking to estimate only that statistic. For ex-
ample, if “MEAN” and “STDEV” commands exist, these
should be used rather than a “STATS” command which cal-
culates the mean and the standard deviation in addition to
several other statistics. (In a single product review it can be
interesting to use different commands to compute the same
quantity and observe the resulting differences.)

As an example, consider the data set Michelso, 100 ob-
servations from an experiment on the speed of light. [Note:
The StRD uses UNIX-style file names, which are case-
sensitive. The names are mnemonic, as perusing the StRD
website will show. For example, SmnLsg01 is the first of
the nine Simon-Lesage data sets for analysis of variance.]
Its difficulty rating is “average.” The certified value for the
standard deviation is .0790105478190518. Package W cal-
culates .078614502891384, so λs = 2.30. This suggests that
the package uses one of the less efficient algorithms.

4.2 ANOVA Tests

This suite has 11 data sets, with levels of difficulty four
lower, four average, and three higher. Each is a one-way
analysis of variance problem. The number of replicates per
cell ranges from 5 to 2001. For each data set, certified val-
ues to 15 digits are provided for “between treatment” de-
grees of freedom; “within treatment” degrees of freedom;
sums of squares; mean squares; the F -statistic; the R2; and
the residual standard deviation.

Since most of the certified values are used in calculat-
ing the F -statistic, only its LRE is presented, λF . Again,
the simplest or most obvious command should be used. For
example, a package might have “ONEWAY”, “ANOVA”,
“MANOVA” and “GLM” commands, all of which are ca-
pable of handling these problems. The “ONEWAY” com-
mand should be used. In a single product review, it may
be useful to compare all the various methods. For packages
that do not have an analysis of variance procedure per se,

The American Statistician, November 1998, Vol. 52, No. 4 361

Table 2. Results of Longley Data Set for Package Y

Variable Coefficient LRE Standard error LRE

constant 6.84 7.15
GNP deflator 4.87 6.44
GNP 5.81 6.26
unemployment 6.45 6.36
military employment 6.94 6.86
population 5.14 6.23
time 6.87 7.17

these tests can be performed using linear regression with
the appropriate dummy variables for treatments.

As an example, consider the ANOVA data set AgWt,
which has a difficulty rating of “average.” Table 1 shows
the certified values calculated by NIST and the results of
a popular spreadsheet, Package X. The usual calculation
produces λF = 1.76, which is sufficiently low that the reli-
ability of the spreadsheet is called into question.

4.3 Linear Regression

This suite has 11 data sets, with levels of difficulty two
lower, two average, and seven higher, the number of obser-
vations ranging from 3 to 82, and the number of coefficients
ranging from 1 to 11. For each data set, certified values to
15 digits are provided for coefficient estimates; standard er-
rors of coefficients; the residual standard deviation; R2; and
the usual analysis of variance for linear regression table,
which includes the residual sum of squares.

Table 2 shows the Longley benchmark LREs for the co-
efficients and standard errors produced by Package Y, a sta-
tistical package. This surfeit of information can be conve-
niently summarized by appealing to the “weakest link in the
chain” principle: use the minimum of the coefficient LREs
and the minimum of the standard error LREs. Thus, for this
package and this data set, λβ = 4.9 and λσ = 6.2. These
comparatively low LREs indicate that Package Y might use
one of the less robust solution methods, for example the
Cholesky decomposition.

4.4 Nonlinear Regression

This suite has 27 data sets, with levels of difficulty 8
lower, 11 average, and 8 higher, the number of observations
ranging from 6 to 250, and the number of coefficients rang-
ing from two to nine. For each data set, certified values to
11 digits are provided for coefficient estimates; standard er-
rors of coefficients; the residual sum of squares; the residual
standard deviation; the degrees of freedom; and the number
of observations.

Also provided are two sets of starting values (“Start I”
and “Start II”) with which to initialize the nonlinear rou-
tine. Start I values are “far” from the solution, and Start II
values are “close” to the solution. As in the case of linear
regression, the LRE is presented for the least accurate co-
efficient, λβ , and the least accurate of the standard errors of
the coefficients, λσ . Table 3 presents results of the data set
Chwirut2 for Package Z using various options for the cal-
culation of first derivatives and the convergence tolerance.

Clearly, these options can make a large difference in the
accuracy of the solution obtained.

In the process of assessing numerical accuracy, the exis-
tence of nonlinear benchmarks can shed light on two im-
portant questions concerning nonlinear estimation:

• Should default options be relied upon? The computed
solution depends on the convergence tolerance (e.g.,
1E–8), the method of solution (e.g., Gauss–Newton
or Levenberg–Marquardt), and the convergence crite-
rion (e.g., residual sum of squares (RSS) or square of
the maximum of the parameter differences (PARAM)).
Frequently, varying these options changes the com-
puted solution

• Are analytic derivatives worth the effort? Analytic
derivatives deliver more accuracy than their finite-
difference approximations. Yet, user-supplied gradi-
ents and Hessians often are viewed as more trouble
than they are worth, and users frequently rely on nu-
merical derivatives when they could supply analytic
derivatives (Dennis 1984). Monte Carlo evidence in
Donaldson and Schnabel (1987) shows that such an
approach leads to a loss of accuracy. Specific exam-
ples will be given in Part II.

A related question concerns packages which offer default
initial conditions for nonlinear estimation: should they be
relied upon? Default initial conditions rarely coincide with
initial conditions crafted to fit the problem at hand, yet as
Press et al. (1992, p. 341) have noted, “It cannot be overem-
phasized, however, how crucially success depends on having
a good first guess for the solution[.]”

In view of these considerations, the nonlinear bench-
marks should be run several ways to determine a “preferred
combination” of options. Having determined the preferred
combination, run all benchmarks using Start I. Report the
LREs of any solution produced. When no solution is pro-
duced (e.g., failure to converge or abnormal end), tinker
with the preferred combination in order to find a solution
from Start I (e.g., vary the tolerance, switch from Gauss–
Newton to Levenberg–Marquardt, if default derivatives are
numerical then change to analytic derivatives, etc.). If none
of these produces an answer, then switch procedures com-
pletely; for example, from unconstrained nonlinear estima-
tion to constrained nonlinear estimation (but with null con-
straints); if this produces a solution, it can be footnoted.
In sum, make an all-out effort to obtain a solution from
Start I. The only proscription is that the objective function
cannot be reparameterized (though it may be necessary to
reparameterize analytic derivatives to achieve a solution).
Only if all these methods fail should Start II be used. In
particular, if Start I yields a solution with zero accurate

Table 3. Results of Chwirut2 Data Set for Package Z

Derivatives Tolerance λβ λσ

numerical 1E–6 6.0 3.8
numerical 1E–12 6.1 3.9
analytic 1E–6 6.6 7.2
analytic 1E–12 10.7 11

362 Statistical Computing Software Reviews

digits and Start II yields several accurate digits, report the
Start I LREs. In general, a Start I solution is preferred to a
Start II solution, and a higher LRE is preferred to a lower
LRE with the following exception: reporting Start II with a
nonzero LRE is preferable to reporting Start I with a zero
LRE, because in the former case at least it is obvious that
no correct solution was produced by Start I.

For packages that allow user access to computed results,
such as SAS and S-Plus, running so many nonlinear re-
gressions is not burdensome. However, it is a burdensome
task for a package which requires the user to save output as
ASCII and cut-and-paste to another program in order to cal-
culate LREs. In a more comprehensive assessment, as might
be undertaken when focusing on only a single package, the
StRD can also be applied to other procedures. For exam-
ple, by formulating an objective function as the negative of
a sum of squared residuals, the nonlinear benchmarks can
be applied to function maximization routines. Some of the
nonlinear problems also are amenable to testing partially
linear routines of the Golub–Pereyra type. Often it may
be instructive to present nonlinear results for both default
options and a preferred combination. Results from default
options typically have fewer digits of accuracy, and more
“zero digits of accuracy” cases.

Attention should be paid to the method of calculating the
covariance matrix. The StRD standard errors are computed
using the product of the gradient and contain a degrees
of freedom adjustment, and so can be used to assess only
packages which employ a similar method. In particular, if
a package uses another method for calculating the standard
errors based, say, on the inverse of the Hessian, it would
be inappropriate to calculate LREs for those standard er-
rors. Finally, it is important to run the tests not only for
Start I and Start II (footnoting those cases where a solu-
tion is achieved for Start I but not Start II), but also for
Start III: using the solution as a starting value. This can
produce anomalous behavior, of which mention should be
made should it occur.

5. TESTING THE RANDOM NUMBER
GENERATOR

The use of random number generators (RNGs) has surged
in recent years. Good introductions are Knuth (1997) or
L’Ecuyer (1994, 1998). A more in-depth, yet still nontech-
nical treatment is Gentle (1998b). Bootstrapping, Monte
Carlo, and other such techniques place ever-increasing de-
mands on a statistical package’s RNG. Theoretical advances
in random number generation have kept pace with these de-
mands (L’Ecuyer 1994). Whether these theoretical advances
have been practically implemented in statistical software is
an open question.

An RNG is said to be reproducible if the same sequence
of random numbers can be produced at will, perhaps by
specifying a seed which initializes the sequence. An RNG
should be reproducible for debugging purposes. The period
of an RNG is the number of calls which can be made to the
RNG before it begins to repeat itself. The period should
be long because the period should be a least an order of

magnitude larger than the square of the number of values
used (Ripley 1987, p. 26); that is, if p is the period and n
is the number of calls to the RNG, then p � 200n2 (Rip-
ley 1990). The reason that only a fraction of the RNG’s
period should be used is because the discrepancy between
the RNG’s output and true randomness increases as n → p
(L’Ecuyer 1998, sec. 4.2.3). Thus, if n = 1000 then p ≈ 231

is acceptable, whereas if n = one million then p should
be at least 250. Knuth (1997, p. 195) recommended a more
modest approach, suggesting that at most p/1000 calls be
made to the RNG. Even then, if n = one million, p should
be 230, which nearly exhausts p ≈ 231 generators common
in PC software.

The implications of period length for applied research are
enormous. A modest double bootstrap with 1999 first-stage
and 250 second-stage resamples for a sample size of 100
requires 50 million calls to the RNG, implying a period of
at least 500 quadrillion (by Ripley’s rule) or 50 billion (by
Knuth’s rule). The situation is even more stark for Monte
Carlo studies. The Monte Carlo of the double bootstrap by
Letson and McCullough (1998) required 45 billion random
numbers, and MacKinnon’s (1996) investigation of unit root
tests required nearly 100 billion.

Since the RNG is intended to produce uniform numbers,
its output should pass tests for uniformity. Sawitzki (1985)
tested the RNG for IBM PC BASIC and found not only that
it has a very short period (p ≈ 216 = 65, 536; per Ripley’s
suggestion useful only for 20 calls!) but that its output was
decidedly not uniform. As Marsaglia (1968) showed, some
RNGs produce sequences which are correlated in k-space.
Therefore, even if the RNG passes univariate tests for uni-
formity (Stephens 1986), it should be subjected to multivari-
ate tests as well (Tezuka 1995; Marsaglia 1993), though for
practical reasons the number of dimensions is usually eight
or fewer. The infamous RANDU (IBM 1968, p. 77) gen-
erator distributed with the IBM 360 mainframe computer
also was decidedly nonrandom. Complicating matters for
users, RANDU was widely imitated, and recommended in
textbooks long after its faults were well-known (Park and
Miller 1988, p. 1198).

Ripley (1990) listed the desiderata of an RNG:

1. be reproducible from a simply specified starting point;
2. have a very long period;
3. produce numbers which are a very good approxima-

tion to a uniform distribution;
4. produce numbers very close to independent output in

a moderate number of dimensions.

An RNG which met these criteria only a few years ago
might now be deemed completely unacceptable, due pri-
marily to deficient period length. If an RNG has a deficient
period, its period often can be increased by shuffling (Press
et al. 1992), but before a user can know be aware of this
situation, the vendor must make known the RNG’s period.
However, if an RNG fails empirical tests of the “birthday
spacings” or “random walk” types, its shuffled output will
not be appreciably more random (Knuth 1997, p. 34).

Coding statistical tests for RNGs is an arduous task.
DIEHARD is automated (with executables for DOS and

The American Statistician, November 1998, Vol. 52, No. 4 363

C, and source code provided), thus greatly facilitating the
testing of RNGs. DIEHARD presumes that the RNG to
be tested can produce 32-bit random integers, but a good
p ≈ 231 RNG will pass almost all the tests. It includes 18
randomness tests, some with many variations.

Details of the tests are described in the DIEHARD doc-
umentation, as is interpretation of the tests. Some of the
tests are also discussed in Knuth (1997, sec. 3.3), Marsaglia
(1993), and Gentle (1998b). Marginal rejections are of no in-
terest; with so many tests statistically significant rejections
are bound to occur. Instead, of interest are p-values that are
zero or unity to all decimal places reported by DIEHARD,
which is evidence of catastrophic failure. Many DIEHARD
tests produce two-level statistical tests with Kolmogorov–
Smirnoff (K–S) statistics, others produce a series of p-
values. Of course, if the null is rejected according to the
K–S test, it fails. Even if the K–S test does not reject the
null, the RNG fails if one of the p-values upon which the
K–S test is based is zero or unity. Similarly, for those tests
which report several p-values: if just one of them is zero
or unity, the RNG fails. Only the uniform RNG is tested,
since other distributions (e.g., normal and Laplacian ran-
dom numbers) typically are created by calls to a uniform
RNG.

6. STATISTICAL DISTRIBUTIONS

The accuracy of statistical distributions (e.g., tail areas
and percentiles) cannot be taken for granted. Inaccuracies
have been documented in Gauss v3.2.6 (Knüsel 1995) which
were still uncorrected in Gauss v3.2.13 (Knüsel 1996), and
also in Excel97 (Knüsel 1998). Functions for evaluating
statistical distributions typically do not have closed form
expressions, and can be approximated in a variety of ways
(Kennedy and Gentle 1980, ch. 5), some more accurate than
others. Brown and Levy (1994), for example, assessed sev-
eral algorithms for the incomplete beta function, and found
only one of them to be reliable. Too, the algorithms for
some approximations converge faster in the central region
than in the tails, and conversely for other distributions. De-
tails of numerically stable computation of statistical func-
tions are explored in Knüsel (1986) and Knüsel and Bablok
(1996). Crude approximations accurate to two or three dig-
its may suffice for calculating p-values, but for most other
applications several digits of accuracy are required. A pro-
gram should compute the desired probability to at least six
significant digits, with relative error smaller that 1E–6 (so
that the exact answer rounds to the displayed result). If not,
the result should be set to zero or an error message should
be displayed. Further details on the accuracy a user ought
to expect are in Knüsel (1995).

Vendors rarely provide any information about their statis-
tical distributions, presenting them to users as black boxes,
whose output is implicitly represented as reliable to all dis-
played digits. It is not uncommon, though, for packages to
display several digits for crude approximations which are
accurate to only a couple digits. Two more common prob-
lems are worth noting. First, numerical underflow varies
from distribution to distribution, and the user is left to dis-

cover this limit for himself for each distribution. For ex-
ample, if a probability p is reported as zero for the Pois-
son distribution, this might mean p < 1E − 16, whereas
it might mean p < 1E − 308 for the binomial distribution.
This should be noted in the reference manual. Second, many
packages compute only lower tail probabilities, P (X ≤ x)
leaving upper tail probabilities, P (X > x) to be calculated
via complementation. With highly accurate approximations
this usually is not a problem for the central region or tail of
a distribution (for crude approximations it is a problem), but
the extreme tail is another matter. When the desired prob-
ability in the upper tail is near zero and its complement is
near unity, cancellation errors can produce “answers” which
are off by an order of magnitude or more.

To see this, consider calculating p = P (X > 265) for
a χ2 distribution with 100 degrees of freedom. SAS 6.12,
SPSS 7.5, and S-Plus 4.0 will compute only P (X ≤ 265)
so the requisite calculation is p = 1 − P (X ≤ 265). SAS,
SPSS, and S-PLUS all calculate p = 1.1102E–16 while the
correct answer is 7.2119E–17. With such programs, small
probabilities in the tails ought not be calculated by com-
plementation, and it would be preferable if such upper tail
probabilities were computed directly.

The first step in assessing statistical distributions is ob-
taining a program for calculating exact values. Two non-
commercial programs are Knüsel’s (1989) ELV program
which is available as a DOS executable, and Brown’s
(1998) DCDFLIB, which is available in C and FORTRAN-
77 tar files. ELV offers a greater variety of functions
and inverses. Output from these programs is referred to
as “exact” percentiles or critical values. Output from the
package being assessed is referred to as “estimated” per-
centiles or critical values. It is impossible to test every
possible input for a statistical distribution, and every al-
gorithm will break down for very extreme inputs. To-
gether, these two points suggest a useful testing strat-
egy. Use ELV or DCDFLIB to obtain critical values
for the following basic sequence of percentiles (BSP):
{.0001, .001, .01, .1, .2, . . . , .9, .99, .999, .9999} (probabilities
outside this range are referred to as the “extreme tails”).
Feed the exact critical values into the statistical package’s
distribution procedure to see if the estimated percentile is
correct. If the package has an inverse function, feed the
BSP into it to determine whether the estimated critical val-
ues are correct. If all seems well, then check the extreme
tails to determine the limits within which the package’s out-
put is reliable. It is important to check the extreme tails, as
many sophisticated statistical methods make use of them,
sometimes requiring accurate evaluation of probablilities as
small as 1E–10 and smaller.

This strategy is easily implemented for the normal dis-
tribution. For the chi-square and Student’s-t distribution, it
might suffice to try for k = 1, 5, 10, 50, 100, 1000 where k
is the degrees of freedom. For distributions with more pa-
rameters, such a semi-thorough approach quickly becomes
infeasible, and the existence of an inverse function greatly
facilitates the search for inaccuracies. For a variety of dif-
ferent parameters, use the BSP and the statistical package’s
inverse function to obtain estimated critical values and im-

364 Statistical Computing Software Reviews

mediately feed these into the function itself. If the original
BSP is not returned, a fruitful area for more thorough inves-
tigation has been uncovered. Reasonable parameter values
for the F distribution and some of the noncentral distribu-
tions can be obtained from Biometrika tables.

The relative error (relerr) is used to measure the accuracy
probabilities. Essentially, if relerr < 1E–4, then the first four
significant digits of the estimated percentile agree with the
exact percentile. Critical values are measured by reporting
the number of accurate digits. Considering statistical func-
tions such as the F , beta, and the various noncentral distri-
butions, even with an inverse function available it is obvious
that testing statistical distributions is an extremely tedious
exercise—as tedious as it is important. Useful templates
for what an exhaustive investigation might look like are the
studies of Gauss and Excel97 by Knüsel (1995, 1998).

7. CONCLUSIONS

Until quite recently, the tools for assessing the reliabil-
ity of statistical software were quite limited in scope and
not readily available. Generally, only entry level tests were
available, and even these were not widely used. The release
of the NIST StRD, together with programs by Marsaglia,
Knüsel, and Brown, changes all that. The present article
proposes a methodology based on these tools. In Part II, this
methodology will be applied to SAS, SPSS, and S-PLUS.

REFERENCES

Bankhofer, U., and Hilbert, A. (1997), “Statistical Software Packages for
Windows: A Market Survey,” Statistical Papers, 38, 393–407.

Brown, B. W. (1998), DCDFLIB v1.1 (Double Precision Cumulative
Distribution Function LIBrary), available at ftp://odin.mdacc.
tmc.edu/pub/source

Brown, B. W., and Levy, L. B. (1994), “Certification of Algorithm 708:
Significant Digit Computation of the Incomplete Beta,” ACM Transac-
tions on Mathematical Software, 20, 393–397.

Dahlquist, G., and Björck, A. (1974), Numerical Methods, New York:
Prentice-Hall.

Dennis, J. E. (1984), “A User’s Guide to Nonlinear Optimization Algo-
rithms,” in Proceedings of the IEEE, 72, 1765–1776.

Donaldson, J. R., and Schnabel, R. B. (1987), “Computational Experience
With Confidence Regions and Confidence Intervals for Nonlinear Least
Squares,” Technometrics, 29, 67–82.

Eddy, W. F., Howe, S. E., Ryan, B. F., Teitel, R. F., and Young, F. (1991),
The Future of Statistical Software: Proceedings of a Forum, Washington,
DC: National Academy Press.

Elliott, A. C., Reisch, J. S., and Campbell, N. P. (1989), “Benchmark Data
Sets for Evaluating Microcomputer Statistical Programs,” Collegiate Mi-
crocomputer, 11, 289–299.

Francis, I. (1981), Statistical Software: A Comparative Review, New York:
North-Holland.

Francis, I., Heiberger, R. M., and Velleman, P. F. (1975), “Criteria and
Considerations in the Evaluation of Statistical Software,” The American
Statistician, 29, 52–56.

Gentle, J. (1998a), Numerical Linear Algebra with Applications in Statis-
tics, New York: Springer.

(1998b), Random Number Generation and Monte Carlo Methods,
New York: Springer.

Goldberg, D. (1991), “What Every Computer Scientist Should Know about
Floating-Point Arithmetic,” ACM Computing Surveys, 23, 5–48.

Hammarling, S. (1985), “The Singular Value Decomposition in Multivari-
ate Statistics,” ACM Special Interest Group on Numerical Mathematics,
20, 2–25.

Higham, N. J. (1996), Accuracy and Stability of Numerical Algorithms,

Philadelphia: SIAM.
IBM (1968), System/360 Scientific Subroutine Package, Version III, Pro-

grammer’s Manual, White Plains, NY: author.
Kennedy, W. J., and Gentle, J. E. (1980), Statistical Computing, New York:

Marcel-Dekker.
Knüsel, L. (1986), “Computation of the Chisquare and Poisson Distribu-

tion,” SIAM Journal on Scientific and Statistical Computing, 7, 1022–
1036.

(1989), “Computergestützte Berechnung Statistischer Verteilun-
gen,” Oldenburg, München-Wien (an English version of the program
can be obtained at www.stat.uni-muenchen.de/˜knuesel/elv)

(1995), “On the Accuracy of Statistical Distributions in Gauss,”
Computational Statistics and Data Analyis, 20, 699–702.

(1996), “Telegrams,” Computational Statistics and Data Analysis,
21, 116.

(1998), “On the Accuracy of Statistical Distributions in Microsoft
Excel 97,” Computational Statistics and Data Analysis, 26, 375–377.

Knüsel, L., and Bablok, B. (1996), “Computation of the Noncentral
Gamma Distribution,” SIAM Journal on Scientific Computing, 17, 1224–
1231.

Knuth, D. E. (1997), The Art of Computer Programming (vol. 2, 3rd ed.),
Reading, MA: Addison-Wesley.

Lachenbruch, P. A. (1983), “Statistical Programs for Microcomputers,”
Byte, 8, 560–570.

L’Ecuyer, P. (1994), “Uniform Random Number Generation,” Annals of
Operations Research, 53, 77–120.

(1999), “Random Number Generation,” in Handbook on Simula-
tion, ed. J. Banks, New York: Wiley, pp. 93–138.

Lesage, J. P., and Simon, S. D. (1985), “Numerical Accuracy of Statisti-
cal Algorithms for Microcomputers,” Computational Statistics and Data
Analysis, 3, 47–57.

Letson, D., and McCullough, B. D. (1998), “Better Bootstrap Confidence
Intervals: The Double Bootstrap with No Pivot,” American Journal of
Agricultural Economics, 80, 552–559.

Ling, R. F. (1974), “Comparison of Several Algorithms for Computing
Sample Means and Variances,” Journal of the American Statistical As-
sociation, 69, 859–866.

Longley, J. W. (1967), “An Appraisal of Computer Programs for the Elec-
tronic Computer from the Point of View of the User,” Journal of the
American Statistical Association, 62, 819–841.

Marsaglia, G. (1968), “Random Numbers Fall Mainly in the Planes,” in
Proceedings of the National Academy of Sciences of the United States
of America, 60, pp. 25–28.

(1993), “Monkey Tests for Random Number Generators,” Comput-
ers and Mathematics with Applications, 26, 1–10.

(1996), “DIEHARD: A Battery of Tests of Randomness,”
http://stat.fsu.edu/˜geo

MacKinnon, J. G. (1996), “Numerical Distribution Functions for Unit Root
and Cointegration Tests,” Journal of Applied Econometrics, 11, 601–618.

McCullough, B. D. (1997), “Benchmarking Numerical Accuracy: A Re-
view of RATS v4.2,” Journal of Applied Econometrics, 12, 181–190.

(in press), “Wilkinson’s Tests and Econometric Software,” Journal
of Economic and Social Measurement.

Park, S. K., and Miller, K. W. (1988), “Random Number Generators: Good
Ones are Hard to Find,” Communications of the ACM, 31, 1192–1201.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1992), Numerical
Recipes in FORTRAN (2nd ed.), New York: Cambridge University Press.

Ripley, B. D. (1987), Stochastic Simulation, New York: Wiley.
(1990), “Thoughts on Pseudorandom Number Generators,” Journal

of Computational and Applied Mathematics, 31, 153–163.
Rogers, J., Filliben, J., Gill, L., Guthrie, W., Lagergren, E., and Vangel,

M. (1998), “StRD: Statistical Reference Datasets for Assessing the Nu-
merical Accuracy of Statistical Software,” NIST TN# 1396, National
Institute of Standards and Technology.

Sawitzki, G. (1985), “Another Random Number Generator Which Should
Be Avoided,” Statistical Software Newsletter, 11, 81–82.

(1994a), “Testing Numerical Reliability of Data Analysis Systems,”
Computational Statistics and Data Analysis, 18, 269–286.

(1994b), “Report on the Reliability of Data Analysis Systems,”
Computational Statistics and Data Analysis (SSN), 18, 289–301.

Simon, S. D., and Lesage, J. P. (1988), “Benchmarking Numerical Ac-

The American Statistician, November 1998, Vol. 52, No. 4 365

curacy of Statistical Algorithms,” Computational Statistics and Data
Analysis, 7, 197–209.

(1989), “Assessing the Accuracy of ANOVA Calculations in Statis-
tical Software,” Computational Statistics and Data Analysis, 8, 325–332.

Stephens, M. A. (1986), “Tests for the Uniform Distribution,” in Goodness-
of-Fit Techniques, eds. R. D’Agostino and M. Stephens, New York:
Marcel-Dekker, pp. 331–366.

Stewart, G. W. (1996), Afternotes on Numerical Analysis, Philadelphia, PA:
SIAM Press.

Tezuka, S. (1995), Uniform Random Numbers: Theory and Practice,
Boston: Kluwer.

Thisted, R. A. (1988), Elements of Statistical Computing, New York: Chap-
man and Hall.

Veall, M. R. (1991), “Shazam 6.2: A Review,” Journal of Applied Econo-
metrics, 6, 317–320.

Vinod, H. D. (1989), “A Review of Soritec 6.2,” American Statistician, 43,
266–269.

Wampler R. H. (1970), “A Report on the Accuracy of Some Widely-Used
Least Squares Computer Programs,” Journal of the American Statistical
Association, 65, 549–565.

(1980), “Test Procedures and Test Problems for Least Squares Al-
gorithms,” Journal of Econometrics, 12, 3–22.

Wilkinson, L. (1985), Statistics Quiz, Evanston, IL: SYSTAT, Inc. (avail-
able at http://www.tspintl.com/benchmarks)

(1994), “Practical Guidelines for Testing Statistical Software,”
Computational Statistics, eds. P. Dirschedl and Rüdiger Ostermann,
Berlin: Physica-Verlag, pp. 111–124.

Wilkinson, L., and Dallal, G. E. (1977), “Accuracy of Sample Moments
Calculations Among Widely Used Statistical Programs,” The American
Statistician, 31, 128–131.

366 Statistical Computing Software Reviews

