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Part I outlined a methodology for assessing the reliability
of three areas: estimation, random number generation, and
calculation of statistical distributions. The present article
applies this methodology to SAS, SPSS, and S-Plus, with
attention to implementation details. Weaknesses are identi-
fied in all the random number generators, the S-Plus corre-
lation procedure, and in the one-way ANOVA and nonlinear
least squares routines of SAS and SPSS.
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1. INTRODUCTION

Part I (McCullough 1998) proposed a methodology for
intermediate-level assessment of the reliability of statisti-
cal software on three fronts: (1) estimation, using the NIST
StRD (Rogers, et al. 1998) to evaluate the accuracy of uni-
variate summary statistics, one-way ANOVA, linear regres-
sion, and nonlinear least squares; (2) random number gener-
ation, using Marsaglia’s (1996) DIEHARD Battery of Ran-
domness Tests to determine whether random numbers are
uncorrelated; and (3) statistical distributions, using either
ELV (Knüsel 1989) or DCDFLIB (Brown 1998) to verify
the accuracy of statistical distributions (used to calculate p
values or critical values). Here in Part II the methodology
is applied to three popular statistical packages: SAS 6.12,
SPSS 7.5, and S-Plus 4.0, running on a 133 MHz Pentium
under Windows 95. Before this can be done, several impor-
tant details must be addressed. First among these is how to
measure the accuracy of a computed statistic.

As discussed in Part I, the base-10 log relative error
(LRE) is used to measure the accuracy of estimated co-
efficients. If x is a value computed by a statistical package,
and c is the correct value (NIST refers to these as “certi-
fied values”), then the number of correct digits in x is given
by the log relative error (LRE) log10(|x − c|/|c|), denoted
by λ with an appropriate subscript. If c = 0, then the log
absolute error is used. Whether the LRE can be accurately
calculated depends upon whether the package permits users
to access or control displayed results.
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Some programs allow the user to access the results of
computations; for example, the slope estimates in a linear
regression. The user can then read in the certified values
and calculate the LRE. S-Plus does this easily, allowing di-
rect access. SAS requires coefficients to be stored and then
accessed. Other programs do not allow the user to access
such results, but do allow the user to control the number
of displayed digits. In this case, after displaying the maxi-
mum number of digits, the output can be saved to an ASCII
file, edited, and then read in to another program along with
the certified values to calculate the LRE. Some SPSS pro-
cedures are like this. Yet other programs do not allow the
user either to access results or control the number of dis-
played digits. Other SPSS procedures are like this. This
can have either a beneficial or deleterious effect on per-
ceived precision. If the certified value has no more digits
than are displayed, the implicit rounding can raise the LRE:
for example, the certified value is .004 exactly and the pro-
gram calculates .00386 but displays only three decimals af-
ter rounding up. Alternatively, if the certified value contains
more digits than are displayed, this can artificially deflate
the LRE: for example, the certified value is .3456789 but
the program only displays three places, .346.

Occasionally, the LRE can inform the user of what is not
written in the user manual. For example, in Part I it was
noted that Package W calculates .786 for the sample stan-
dard deviation (s) of the dataset Michelso, while the StRD
certified value is .790, for an LRE of λs = 2.3. It can be
deduced that Package W divides by n instead of n − 1.
[Thanks to J. Doornik for pointing this out.] The documen-
tation gives no formula for s, but does mention the usual
degrees of freedom correction for the standard errors of re-
gression coefficients. Most users might not expect the max-
imum likelihood estimator of s. Therefore, the application
of the benchmark has revealed useful information about the
package.

A procedure can return satisfactory LREs for almost all
the test problems in a suite, and yet be judged inadequate.
As an example, consider the linear regression suite. In the
presence of collinear data, some algorithms are likely to
give erroneous results. Therefore, before displaying results,
the program should test the data to ensure they are not too
collinear—if they are too collinear, the program should not
report results but instead return a “near singular data ma-
trix” or other similar error message. So important is this
pre-testing that Press, Teukolsky, Vetterling, and Flannery
(1992, p. 23) wrote “much of the sophistication of compli-
cated ‘linear equation-solving packages’ is devoted to the
detection” of near-singularity.

For most any linear equation solver, it is possible to
reverse-engineer a problem that causes the solver to fail.
Such problems do not constitute useful, general-purpose
benchmarks. The StRD problems were carefully chosen to
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avoid this possibility. For the StRD problems, a reliable
solver will either return several accurate digits or an error
message: it will not produce a “solution” with zero accu-
rate digits. The StRD linear regression test problem “Filip”
is a tenth degree polynomial. This nearly singular problem
can severely stress many linear solvers. Suppose a pack-
age returns several accurate digits for all linear regression
problems but Filip, for which it returns zero accurate dig-
its instead of an error message. Then that package’s linear
solver can be considered unreliable on the grounds that it
either does not check for near-singularity, or does a very
poor job of checking.

There is an analagous situation for nonlinear least
squares. It is too much to expect that a particular nonlinear
solver can always find a solution, but it is not too much to
expect that a solver can recognize when it has not found
a solution. Accordingly, a reliable nonlinear solver will re-
turn either accurate digits or an error message indicating
that a solution cannot be found. Nonlinear estimation is,
of course, much more complicated than linear estimation.
Therefore, the remainder of this section considers details of
nonlinear estimation which are relevant to using the StRD.

The solution to a nonlinear least squares estimation prob-
lem obtained from using default options rarely is as good
as that obtained from using some other settings. For every
package there does seem to be some “preferred combina-
tion” of options which consistently yields better results than
default options. Simply trying all possible combinations re-
sults in an unmanageably large set of possibilities, so some
more efficient method is necessary. All 27 of the nonlin-
ear test problems come with two sets of starting values:
Start I is “far” from the solution, and Start II is “close”
to the solution. Start II is used only if no solution—even
one with zero accurate digits—can be obtained from Start
I. To keep the number of combinations manageable, all the
benchmarks were run in the following order, using the LRE
of the coefficients (λβ) as the metric and only Start I values:

1. With everything else at default, the convergence crite-
rion was varied, and the “best” criterion noted. For example,
better performance might be observed with “convergence
on the residual sum of squares” (RSS) than “convergence
on parameters” (PARAM).

2. Having determined the best criterion, a good conver-
gence tolerance was sought. If the default tolerance is 1.E-
6, it was changed to the minimum tolerance—for exam-
ple, 1.E-12. If a difference was observed, the tolerance was
gradually increased to find the largest acceptable tolerance
which is less than default.

3. Having determined criterion and tolerance, the method
of solution was varied—for example, default Gauss–
Newton was changed to the optional Levenberg–Marquardt.

4. Having determined criterion, tolerance, and method,
the better form of derivative was chosen—that is, numeri-
cal or analytic and, if analytic, whether analytic first- and
second-derivatives or just analytic first-derivatives.

5. Using results from the previous steps, obvious im-
provements were sought. For example, if the criterion was

determined using numerical derivatives, but analytic are
much better, Step 4 was repeated to examine whether the
use of analytic derivatives reverses the conclusion as to cri-
terion.

Obviously, finding a preferred combination can involve
several dozen nonlinear regressions. Developers frequently
can provide useful guidance in choosing a preferred com-
bination, and alleviate the burden of running so many non-
linear regressions. Once the preferred combination is de-
termined, it is used on all 27 problems with Start I. If the
preferred combination yields no solution, then other meth-
ods should be tried before resorting to Start II. There is also
a Start III: use the certified values as the starting values; in
some packages this can produce anomalous behavior. Note
that some of the nonlinear problems use π; if the package
does not offer this constant, it should be defined to 16 digits.

The choice of derivative calculation merits attention as
well, since derivatives are central to nonlinear estimation.
It is well-known that exact analytic derivatives are more
accurate than their numerical approximations (Bard 1974,
p. 117; Kennedy and Gentle 1980, p. 474). The general rule
is that analytic first and numerical second derivatives are as
good as analytic first and second derivatives, though there
are exceptions such as GARCH estimation (Fiorentini, Cal-
zolari, and Panattoni 1996). See Donaldson and Schnabel
(1987) for further comparison of analytic and numerical
derivatives in the context of nonlinear estimation.

Packages vary in the way they accommodate derivatives.
Some packages such as SAS have automatic analytic differ-
entiation. Many packages offer only numerical derivatives.
Other packages, such as SPSS, use numerical derivatives
by default, but can accommodate analytic derivatives if the
user calculates and codes them. S-Plus is none of the above.
It uses numerical derivatives by default, and allows ana-
lytic derivatives to be supplied, but does not require the
user to calculate or code them. S-Plus has a built-in facility
for calculating and coding analytic derivatives: the “deriv”
command is used for analytic first derivatives, and Smith’s
(1992) “deriv3” extension produces analytic second deriva-
tives.

Requiring users to supply analytic derivatives is yet a fur-
ther impediment to reliable nonlinear estimation, because
the not-insubstantial effort involved frequently leads users
to eschew analytic derivatives completely, and instead rely
on default numerical differentiation (Dennis 1984, p. 1766).
Such an approach is not conducive to accuracy, as noted by
Gill, Murray, and Wright (1981, p. 285), “[I]f computing
first derivatives is merely inconvenient, the user should be
aware of the increased complexity and decreased reliability
that result when exact first derivatives are not available to
an algorithm.” This decreased reliability can easily be veri-
fied by using a package to run the StRD nonlinear problems
twice: once with numerical derivatives and again with ana-
lytic derivatives.

User-supplied analytic derivatives are twice ripe for er-
ror, since the user not only must calculate the derivatives,
but also code them. Whether calculating or coding is more
onerous depends upon the equation and number of param-
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Figure 1. StRD Results for SAS V6.12.

eters. Several benchmarks have seven or eight parameters,

and ENSO has nine, for which gradient and Hessian com-

bined produce 54 supplementary equations. Symbolic com-

putation can drastically relieve the first burden. A pack-

age such as Mathematica v3.01 (Wolfram 1996), which was

used for this project, can completely eliminate both burdens

by displaying the 54 ENSO equations in FORTRAN-style

text complete with proper command syntax for immedi-

ate cut-and-paste into the statistical package’s program ed-

itor. Not only does this method offer speed, it eliminates

the inevitable transcription errors which occur when cod-

ing a displayed equation to FORTRAN-style text. The first
and second derivatives for the StRD nonlinear problems are
available at the TAS ftp site (ftp://www.amstat.org/tas).

The remainder of this article is organized as follows. Sec-
tion 2 applies the StRD to the three packages and compares
the results. The comparison raises some interesting numeri-
cal issues, which are explored in detail. Section 3 discusses
some technical details for applying the DIEHARD tests,
and presents the DIEHARD results for the three packages.
Mention is made of the fact that none of the developers
provides users with necessary information concerning its
random number generator (RNG). Section 4 uses ELV to
assess the accuracy of selected statistical distributions, and
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references to more complete assessments are given. Section
5 presents the conclusions.

2. StRD

The datasets and the certified values provided by NIST
are in double-precision. Users of packages that offer single-
precision storage with an option for double-precision stor-
age should be sure to invoke the double-precision option,
to ensure that the data are correctly read by the program.
[Thanks to P. Lachenbruch for pointing this out.] Such users
should also be aware that single-precision storage can have
an adverse effect on accuracy, even when the input data are
single-precision. This can be seen with a problem for which
the dataset is single-precision, such as the linear regression
problem in Longley (1967). Solve the problem once with
single-precision storage, and again with double-precision
storage.

2.1 SAS

Univariate Statistics—The mean and standard deviation
were calculated using the “MEANS” command. The first-
order autocorrelation coefficient was calculated using the
“IDENTIFY” option of the “ARIMA” command from the
ETS package. The results, shown in Figure 1, are quite ac-
curate, though why it should fail to calculate the first-order
autocorrelation coefficient for NumAcc1, which has three
observations, is not clear.

Analysis of Variance—The “ANOVA” command gener-
ated the statistics. Observe that performance degrades pre-
cipitously after the lower difficulty problems. A nearly iden-
tical degradation occurs using “GLM” to solve these prob-
lems, but not with “ORTHOREG”, which appears to be the
preferred method.

Linear Regression—“REG” calculated the statistics. It
indicated near-singularity for FILIPPEL, and so the “OR-
THOREG” command was then used to obtain an accurate
solution. All the result are quite accurate. Note that the
expectation of ten digits of accuracy for a linear problem
applies only to the lower level of difficulty problems.

Nonlinear Regression—“PROC NLIN” was used, which
employs automatic analytic differentiation. Default method
of solution is Gauss–Newton. Other methods are Mar-
quardt, Newton, DUD (regula falsi), and steepest descent.
Available convergence criteria are RSS and PARAM, the
former being default. Trying various combinations of the
options resulted in the following preferred combination:
convergence criteria PARAM with tolerance 1E-6, analytic
derivatives (default), and the Gauss–Newton method (de-
fault). Compared to default estimation, this preferred com-
bination 8 times gave the same answer (including zero dig-
its of accuracy three times), twice was less accurate by an
average 2.4 digits, and 13 times was more accurate by an
average 1.8 digits.

SAS does not provide initial estimates for parameters. In
no case, including using other solution methods, could con-
vergence be obtained for MGH17, MGH09, BoxBOD and

Eckerle4 from Start I (it was sometimes necessary to check
the log file to determine that the output file really should not
have reported results). Zero digits of accuracy were com-
puted for MGH10, Rat43, and Bennett5 from Start I. Ad-
ditional nonlinear procedures are “MODEL” in SAS/ETS
and “NLP” in SAS/OR. Both MODEL and NLP will solve
BoxBOD from Start I, while NLP will also solve MGH17
from Start I. As these commands are not part of the base
system, their results are not presented. Solving from Start
III produced no anomalies.

StRD results are presented in Figure 1. To see that the
preferred combination does produce better solutions, the
LRE of the coefficient produced by default estimation is
given in parentheses next to the LRE of the coefficient pro-
duced by the preferred combination. For each dataset the
table shows: the minima of the LREs for the coefficients
(λβ) and the standard errors of the coefficients (λσ); the
LRE for the residual sum of squares (λr); and the difficulty
of the dataset (lower, average, higher) indicated by a par-
enthetical “l”, “a”, or “h”. If the procedure fails to produce
a solution, this is indicated by “ns”.

2.2 SPSS

Univariate Statistics—The command “descriptives X”
with the option “/statistics=mean,” “stdev” produced the
mean and standard deviation for variable X. These results,
shown in Figure 2, are quite accurate. The “acf” command
produced the first-order autocorrelation coefficient, which
could not be calculated for NumAcc1. Since “acf” displays
only three decimal places, this understates accuracy for the
first five tests and overstates accuracy for the last three tests.

Analysis of Variance—For two variables, X (treatment)
and Y (response), where X takes on integer values between
min and max, inclusive, the following command was is-
sued: “oneway Y by X(min,max)”. SPSS handles the lower
level of difficulty, but performance degrades precipitously
thereafter. For the dataset AtmWtAg it does not report an
F-statistic; the system missing-value is returned.

One-way analysis of variance tests can be conducted four
other ways in SPSS: “means y by x /stat=anova”; “anova y
by x(min,max)”; “manova Y by X(min,max)”; and by “glm
y by x”. The results for “means” in SmnLsg04 includes
a negative between-group sum of squares. The command
“manova” is more accurate than the others.

Linear Regression—The command “regression /vari-
ables=Y,X1,X2 /criteria=tolerance(1.0E-12) /depen-
dent=Y /method=enter” was used. SPSS will refuse to
include all the independent variables if the tolerance is ex-
ceeded. This occurred for several of the problems, so the
tolerance was set at 1E-12 (default is .0001). Even this was
insufficient to produce a solution for Filip, a tenth-order
polynomial. Overall, the results are quite accurate.

Nonlinear Regression—The nonlinear estimation com-
mand is “NLR”. The default (and only) method for this
command is Levenberg–Marquardt, and starting values
must be provided by the user. There are three convergence
criteria: RSS, PARAM, and RCON (correlation between
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Figure 2. StRD Results for SPSS v7.5.

residuals and derivatives). By default they operate simul-
taneously each with tolerance 1E-8: if any of the criteria
is reached, the procedure terminates. Each can be disabled,
though, so it is possible to use just one criterion; this was
done. The preferred combination is: PARAM convergence
criterion, tolerance 1E-12, analytic gradient. Compared to
default estimation, both provided zero digits of accuracy for
the same problem (ENSO), but default provided zero dig-
its of accuracy for two more (BoxBOD and MGH10), and

produced no solution for two (MGH17 and Bennett5). Of
the remaining 22 problems, 7 times they tied and 15 times
the preferred combination was more accurate by an aver-
age 1.6 digits. SPSS also offer the “CNLR” command for
nonlinear regression subject to constraints. Using this com-
mand without supplying constraints offers another method
for solving unconstrained nonlinear least squares problems.

A solution for all problems was produced from Start I,
though in the case of ENSO this solution had zero dig-
its of accuracy. For BoxBOD the “CNLR” command was
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Figure 3. StRD Results for S-Plus v4.0.

used because no solution could be obtained with “NLR”,
no matter what options were invoked. Solving from Start
III, produced no anomalies. StRD results are presented in
Figure 2.

2.3 S-Plus

Univariate Statistics—The “mean” function is used to ob-
tain the mean. To obtain the standard deviation, the “var”
function is used and its square root is taken. These re-
sults, shown in Figure 3, are quite accurate. The “acf” com-
mand produced the first-order autocorrelation coefficient. It

yielded about seven digits of accuracy which, for a linear
procedure, is less than can be reasonably expected.

Analysis of Variance—The one-way analysis of variance
was conducted using the “aov” command. Performance
clearly degrades as the level of difficulty increases. This
is to be expected, and will be addressed at length in the
next subsection.

Linear Regression—The “lm” command was used to run
the linear regressions. At default the program refused to
compute a solution for Filip because it encountered a sin-
gularity. However, the “lm” command has an option for
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Table 1. S-Plus LREs for SmnLsg Problems

d

n 1 10 13

189 SmnLsg01 SmnLsg02 SmnLsg03
(14.5) (14.3) (12.9)

1809 SmnLsg04 SmnLsg05 SmnLsg06
(10.4) (10.2) (10.2)

18009 SmnLsg07 SmnLsg08 SmnLsg09
(4.6) (2.7) (0)

NOTE: d : number of constant leading digits; n: number of observations

setting the tolerance. When tolerance was set at 1E-10, an
answer was produced. The results are quite accurate.

Nonlinear Regression—The “nls” command was used to
run the nonlinear regressions. The default (and only) estima-
tion method is Gauss–Newton. The default (and only) con-
vergence criterion is residual sum of squares. S-Plus does
not offer default starting values. The preferred combina-
tion is: tolerance 1E-6, RSS convergence (default), Gauss–
Newton method (default), and analytic gradient. Comparing
the preferred combination to default estimation, both failed
to provide a solution to five of the problems. Twice de-
fault failed where the preferred combination succeeded and
once they were tied. In the remaining 19 cases, the preferred
combination was more accurate by an average 2.8 digits.

S-Plus also offers the “nlregb” command for nonlinear re-
gression subject to constraints. Using this command with-
out supplying constraints is another way to solve uncon-
strained nonlinear least squares problems. This command
solved from Start I the problems which “nls” with analytic
gradient could not. To obtain standard errors from this com-
mand is a programming exercise. A much easier way, which
is used here, is to take the solution from this command and
feed it to the “nls” command to obtain standard errors.

All problems but MGH10 are solved from Start I, though
for four problems it was necessary to resort to “nlregb”. In
no case was zero digits of accuracy produced. Solving from
Start III produced no anomalies. StRD results are presented
in Figure 3.

2.4 Comparisons

For the univariate summary statistics, all packages accu-
rately compute the mean and standard deviation. The first-
order correlation coefficient is another matter. While SAS
does well, the accuracy of SPSS cannot be determined be-
cause the user can neither access this statistic nor control
the number of displayed digits. The S-Plus routine appears
to be weak, delivering fewer accurate digits than can be ex-
pected for such a routine. Both SAS and SPSS inexplicably
refuse to compute for NumAcc1, which has three observa-
tions.

ANOVA results vary greatly. SAS and SPSS cannot pass
the average difficulty problems. S-Plus appears to do poorly
on the higher difficulty problems; however, its results are
approximately the same as can be obtained by using an
accurate linear regression routine with appropriate dummy

variables. This suggests that the S-Plus results do not in-
dicate a bad software but, rather, that these problems can
exhaust the capabilities of 32-bit double-precision computa-
tion. By comparison, the SAS and SPSS routines clearly do
not implement effective algorithms. Further analyis of the
S-Plus results is instructive, and will be considered anon.

As far as linear regression is concerned, the Longley
(1967) lesson has been well-learned: all packages demon-
strate reliability on all of the datasets. The same cannot be
said for nonlinear regression, which presents some inter-
esting results. From a general perspective, two things are
clear. First, analytic derivatives are preferable to numerical
derivatives. Second, default estimation is not reliable, and
for each package there exists a preferred combination of
options. S-Plus never returns a solution with zero digits of
accuracy, and solves from Start II only one time; the default
numerical derivatives must be replaced with analytic first-
derivatives to achieve this accuracy. SPSS always solves
from Start I, but produces one solution with zero accurate
digits; the default numerical derivatives must be replaced
with user-supplied analytic first derivatives to achieve this
accuracy. SAS three times produces zero accurate digits and
four times solves from Start II, and has automatic analytic
differentiation as the default.

Returning to the S-Plus performance on the ANOVA
datasets, consider the dataset SmnLsg01, which has 189
observations on a treatment variable, X , which assumes in-
teger values, and a response variable, Y 1, which assumes
values of unity plus a single decimal, for example, 1.2, 1.5,
etc.; the mean of Y 1 is 1.4 exactly. The data of SmnLsg02
and SmnLsg03 are of the same magnitude, but with sam-
ple sizes of 1,809 and 18,009, respectively. The dataset
SmnLsg04 has the same treatment variable as SmnLsg01,
and the response variable Y 4 is the same as Y 1 except
nine zeroes have been inserted between the 1 and the dec-
imal, so its mean is 1000000000.4 exactly. Similarly, Y 7
from SmnLsg07 has twelve zeroes inserted, so its mean is
1000000000000.4 exactly.

Algebraically, SmnLsg01, SmnLsg04, and SmnLsg07 are
the same problem, in the sense that they give rise to
identical ANOVA tables (degrees of freedom, sums of
squares, etc.). Numerically, though, they differ on a fi-
nite precision computer, as was seen. The same is true
for SmnLsg02, SmnLsg05, SmnLsg08 and SmnLsg03,
SmnLsg06, SmnLsg09. The larger the number of constant
leading digits, the more difficult it becomes to calculate the
sum of squares, because subtracting the treatment means
from the overall mean produces cancellation error.

Constant leading digits are not the only problem—the
number of observations can also reduce accuracy through
the effect of cumulated rounding error. Some readers may
be surprised to see that in the present example, the num-
ber of observations has a more deleterious effect than the
number of leading digits. This is shown clearly in Table 1,
which displays the dataset names according to the number
of digits to the left of the decimal (d) and the sample size
(n), together with the S-Plus LREs in parentheses.

The effect of increasing the number of leading digits
(look across any row) is not nearly as serious as increas-
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ing the number of observations (look down any column).
The degradation is not serious going from 189 to 1,809 ob-
servations, but is grave going from 1,809 to 18,009 obser-
vations. Note that the S-Plus results are approximately the
same as can be obtained by solving these ANOVA problems
using an accurate linear regression routine with appropriate
dummy variables, so it is clear that the problem is not with
the software—the data have exhausted the capabilities of
the 32-bit double-precision. For these problems, packages
which can use symbolic calculation can achieve remark-
able accuracy. Mathematica v3.01, for example, can solve
all the StRD ANOVA problems to 15 digits of accuracy
using Hunka’s (1997) add-on package.

This is not to suggest that these problems are be-
yond accurate numerical computation using 32-bit double-
precision. Again using linear regression, the usual it-
erative refinement technique for solving linear systems
(Higham 1997, sec. 11) can produce 4.2 accurate digits for
SmmLsg09, though it may be necessary to center the re-
sponse variable if the total sum of squares is computed
separately. The ANOVA tests underscore the importance of
the researcher being aware of the limits of finite precision
calculation and the algorithm being used, and having some
idea of whether the problem at hand exceeds those limits.
Clearly the S-Plus algorithm is not appropriate for large
datasets, to say nothing of the SAS and SPSS algorithms.
Yet, there are many disciplines where analyzing tens or even
hundreds of thousands of observations is not uncommon.
Published articles analyzing such large datasets rarely de-
scribe any procedures undertaken to determine whether the
size of the dataset has exhausted the computer’s finite pre-
cision (Kennedy and Gentle 1980, secs. 3.8 and 8.1.3).

3. RANDOM NUMBER GENERATOR

The DIEHARD Battery of Randomness Tests was not
written with user-friendliness in mind, and the documenta-
tion is a bit sketchy, so some mention of how to use the
program is appropriate. The input to the DIEHARD pro-
gram is a file of some three million random 32-bit inte-

gers, though signed 32-bit integers may be more practical
for some users. [Note: Signed 32-bit integers are mentioned
here because QBASIC, available through MS-DOS, will ef-
fect the necessary hexadecimal conversion for 32-bit signed
integers, but not for 32-bit integers per se. Users with access
to FORTRAN or some other package with more robust hex-
adecimal conversion can use 32-bit integers.] Letting RAN
be a call to a uniform (0,1) generator, each integer is cal-
culated as INT(−2147483649 + 4294967297∗RAN), where
INT(x) truncates the decimal part of x. The statistical pack-
age writes these to an ASCII file, which then must be con-
verted to a specifically structured hexadecimal file (format-
ting details are in the DIEHARD documentation). Because
some statistical packages offer neither hexadecimal conver-
sion nor sufficient control over output formatting, it may
be necessary to use a programming language to convert the
integers to a hex file. An auxiliary program then converts
the hex file to a binary file, which is the input to the main
DIEHARD program that actually computes the tests. Of
crucial importance is that the statistical package write the
integers to the ASCII file in the order that they are gener-
ated, and that this order be preserved in the conversion to
hexadecimal.

All the packages reviewed herein have reproducible
RNGs. Whether any of the packages discussed herein meets
the remaining desiderata of an RNG (Ripley 1990) cannot
be determined from the user manuals. SAS cites Fishman
and Moore (1982) for its RNG, but offers no further details.
SPSS and S-Plus hardcopy manuals provide no details of
their RNGs. None of the vendors provides the algorithm,
its period, or the statistical tests it has passed. This is a seri-
ous omission. The S-Plus on-line documentation refers to a
“modified” Marsaglia Super-Duper RNG, but does not de-
scribe the modifications. This may be misleading, since it is
well-known that the Super-Duper passes all the DIEHARD
tests for randomness. This bears out Knuth’s (1997, p. 26)
admonition against modifying RNGs. Test results appear in
Table 2. Passing a test merits a lowercase “p” while failing
a test earns an uppercase “F”.

Table 2. Results of Marsaglia’s DIEHARD Tests

Test SAS SPSS S-Plus

Birthday Spacings Test p p p
Overlapping 5-Permutation Test p p p
Binary Rank for 31 × 31 Matrices p p p
Binary Rank for 32 × 32 Matrices p p p
Binary Rank for 6 × 8 Matrices p p p
Bitstream Test (p values) p p p
OPSO Test p p p
OQSO Test p p F
DNA Test p p F
Count the Ones Test (stream of bytes) F F F
Count the Ones Test (specific byte) p p F
Parking Lot Test p p p
Minimum Distance Test p p p
3-D Spheres Test p p p
Squeeze Test p p p
Overlapping Sums Test p p p
Runs Test p p p
Craps Test p p p
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Table 3. SAS F (x ,201,10001) Distribution

x exact value SAS relerr x exact value SAS relerr

1 .51287 exact 0 .50 3.7174E-10 4.3115E-10 .1598
.9 .15967 .15962 .0003 .40 1.4682E-15 2.2760E-15 .5502
.8 .017628 .017643 .0009 .38 6.2755E-17 1.1102E-16 .7691
.7 .00045779 .00046236 .0100 .37 1.1716E-17 0 1.0
.6 1.6421E-6 1.7170E-6 .0456 .30 9.2465E-24 0 1.0

All three vendors offer RNGs with periods approximately
231. Since DIEHARD presumes a period of 232, SAS and
SPSS do about as well as can be expected—though S-Plus
clearly does not. As discussed in Part I, none of the three
RNGs is suitable for intensive use due to deficient pe-
riod length. When software developers begin implement-
ing RNGs suitable for intensive use, more sophisticated
tests will be necessary. Marsgalia is planning an upgrade
to DIEHARD, and L’Ecuyer’s (L’Ecuyer and Hellekalek in
press) TESTU01 program is in the testing stage, with re-
lease tentatively scheduled for some time in the coming
year.

4. STATISTICAL DISTRIBUTIONS

We are all familiar with the normal, Student’s t, and other
such distributions found in the appendix of a statistics text.
It may come as a suprise to find that similar percentiles gen-
erated by a computer program are not always more accurate
than these tables. It is important, therefore, that the quality
of statistical distributions be assessed. Serious errors have
been found in some packages, (Knüsel 1995, 1998; McCul-
lough 1999). Note that none of the vendors describes the
algorithms used to compute these quantities, nor provides
the limits within which they work reliably. This is a serious
omission.

Only a few examples of testing distributions will be
given, because thorough investigations of both SAS v6.08
(Knüsel 1997a) and S-Plus v3.3 (Knüsel 1997b) have been
done. Both of these studies are must-reading for the users
of the respective packages. In general, both packages are
fast and accurate, though each package has some inconsis-
tencies which would be of interest to its users. A similar
study of SPSS would be must-reading for its users.

Neither SAS nor S-Plus made significant changes to its
statistical distributions in subsequent versions. The exam-
ples presented are taken directly from Knüsel’s studies, and
were verified for the current versions of the software. The
exact value (c) computed by ELV, the estimated value (x)
computed by the statistical packages, and the relative error
(= |x − c|/c) are presented. If relerr > 1 it is set to unity.

4.1 SAS

Normal distribution—“PROBNORM(x)” computes the
probability that a standard normal variate is less than x.
The lower tail probability seems to be correct (relative er-
ror less than 1E-6) for very small probabilities (1E-100 and
even smaller).

Chi-square distribution “PROBCHI(x,k)” computes the
probability that a chi-square distributed variate with k de-
grees of freedom is less than x. The lower-tail probability
with k degrees of freedom seems to be correct (relative er-
ror less than 1E-6) for probabilities as small as 1E-100 and
for k as large as 1E+08. Real values are admitted for k.

F-distribution—“PROBF(x,m,n)” computes the proba-
bility that an F-distributed variate with m and n degrees
of freedom is less than x. The lower-tail probability with
degrees of freedom m and n degrees can be incorrect for
extreme values of the degrees of freedom, as shown in Ta-
ble 3. Results for other distributions can be found in Knüsel
(1997a).

4.2 SPSS

Normal distribution—“CDF.NORM(x)” computes the
probability that a standard normal variate is less than x.
The lower-tail probability seems to be correct (relative er-
ror less than 1E-5) for probabilities as small as 1E-8.

F-distribution—“CDF.F(x,m,n)” computes the probabil-
ity that an F-distributed variate with m and n degrees of
freedom is less than x. The lower-tail probability with de-
grees of freedom m and n degrees can be incorrect for ex-
treme values of the degrees of freedom, as shown in Table
4.

4.3 S-Plus

Normal distribution—“dnorm(x)” computes the probabil-
ity that a standard normal variate is less than x. The lower-
tail probability seems to be correct (relative error less than
1E-6) for probabilities as small as 1E-8.

Table 4. SPSS F (x ,201,10001) Distribution

x exact value SPSS relerr x exact value SPSS relerr

1.0 .51287 exact .0 .50 3.7174E-10 4.9672E-10 .3362
.9 .15967 exact .0 .40 1.4682E-15 8.2157E-15 1.0
.8 .017628 exact .0 .38 6.2755E-17 6.6613E-16 1.0
.7 .00045779 .00045785 .0001 .37 1.1716E-17 2.2204E-16 1.0
.6 1.6421E-6 1.6791E-6 .0225 .30 9.2465E-24 .0 1.0
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Table 5. S-Plus Student’s-t Distribution

exact
x n value S-Plus relerr

−9.7 100 2.251546E-16 2.220446E-16 .0138
−9.8 100 1.358964E-16 1.110223E-16 .1830
−9.9 100 8.202263E-17 5.551115E-17 .3232

−10.0 100 4.950844E-17 5.551115E-17 .1212
−10.1 100 2.988587E-17 5.551115E-17 .8574
−10.2 100 1.804321E-17 0.0 1

Student’s-t distribution—“dt(x,k)” computes the proba-
bility that a t-distributed variate with k degrees of freedom
is less than x. It has some problems in the extreme tails, as
shown in Table 5.

Chi-square distribution—“dchisq(x,k)” computes the
probability that a chi-square distributed variate with k de-
grees of freedom is less than x. It exhibits chaotic behav-
ior for extreme values of the parameters, as shown in Ta-
ble 6. Results for other distributions can be found in Knüsel
(1997b).

Table 6. S-Plus Chi-Square Distribution

exact
x n value S-Plus relerr

2E13 2E13 .5000000 .5233686 .0467
2E14 2E14 .5000000 .5902894 .1806
2E15 2E15 .5000000 .6478144 .2956
4E15 4E15 .5000000 −741.3565 1
6E15 6E15 .5000000 .7966655 .5933
8E15 8E15 .5000000 .8239072 .6478
1E16 1E16 .5000000 1.0 1

5. CONCLUSIONS

SAS, SPSS and S-Plus have been assessed using the
methodology outlined in Part I (McCullough 1998). Flaws
have been uncovered in all three areas: estimation, random
number generation, and statistical distributions. Generally,
all packages perform well on univariate summary statis-
tics and linear regression test suites. For one-way analysis
of variance, SAS and SPSS have inadequate routines, and
the S-Plus routine exhibits a predictable degradation due
to the limits of finite precision computation. SAS can cor-
rectly solve only 20 of the 27 nonlinear problems from
Start I. SPSS correctly solves 26 of the 27 from Start I
only when user-supplied analytic first derivatives are em-
ployed, and returns zero accurate digits once. S-Plus cor-
rectly solves all 27 problems, all but one from Start I. All
three packages present both the random number generator
(RNG) and statistical distributions as black boxes—without
supplying critical information as to algorithm employed,
and so on. All have RNGs that are inadequate due to de-
ficient period length, and the S-Plus RNG fails too many
of the DIEHARD tests. Previous work by Knüsel indicates
that statistical distributions of SAS and S-Plus are satisfac-
tory, but the adequacy of SPSS statistical distributions has
yet to be demonstrated. As this article goes to press, all

three packages have released subsequent verions of their
software, and may have remedied some of the deficiencies
noted herein.

The reliability of statistical software cannot be taken for
granted; neither can the reliability of econometric software
(McCullough in press) or statistical functions in spreadsheet
software (McCullough and Wilson in press). The tests ap-
plied herein only begin to inform users as to the reliability
of their software. That the general linear and nonlinear rou-
tines can be shown to work well does not necessarily im-
ply that specialized linear and nonlinear routines also work
well. These, too, need to be benchmarked; several examples
are given in McCullough and Vinod (in press). Perhaps a
more widespread use of benchmarks in software reviewing
will induce reviewers to develop new benchmarks for inclu-
sion in their reviews, or afford more journals the incentive
to publish new benchmarks.

An increase in the number of benchmarks and other
means of assessing the reliability of statistical software and
their use in software reviewing can only improve the qual-
ity of statistical software. This, in turn, will remediate the
problem mentioned in the introduction of Part I: different
packages giving different answers to the same problem.

[Received August 1998. Revised February 1999.]
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