Introduction to Sampling for Non-Statisticians

Dr. Safaa R. Amer

Overview

Part I
- Introduction
- Census or Sample
- Sampling Frame
- Probability or non-probability sample
- Sampling with or without replacement
- Some random sampling techniques

Part II
- Sample Size
- Post-sampling steps
- Sampling versus non-sampling errors
- References
Questions to Ponder Upon!

• Pre-sampling
 • Nature of study: exploratory, descriptive, analytical
 • Variables of interest
 • Target population & sub-populations
 • Data collection mode
 • Is sampling appropriate?

• During sampling
 • Availability of population listing
 • Error that can be tolerated
 • Sampling technique
 • Number of units sampled

Questions to Ponder Upon!

• Post-sampling
 • Use of weights
 • Impact of non-response
 • Standard errors for study estimates
Census or Sample

- **Census** is “a complete enumeration of the population”

- **Sampling** is “the act, process, or technique of selecting a suitable sample, or a representative part of a population for the purpose of determining parameters or characteristics of the whole population”

- **Goal** is to determine a population’s characteristics by directly observing only a portion of the population.

Benefits of Sampling:

- **Reduced Cost**
- **Faster results**
- **Increase Precision ➔ Even over Census sometimes!**
Sampling Frame

- A list of all elements in the study population of interest:
 - Names of individuals
 - Telephone numbers
 - House addresses
 - Census tracts

- Target population:
 - From which the sample is drawn
 - To which the sample data will be generalized

Probability or Non-Probability Sample

- Probability/Random Sample:
 - Allows a known probability that each elementary unit will be chosen
 - Type of sampling that is used in lotteries and raffles
 - Used to estimate population parameters with accuracy

- Non-Probability Sample:
 - Convenience sample, judgment sample, snowball sample, quota sample
 - Useful for pilot studies, case studies, qualitative research, and for hypothesis development
Sampling With or Without Replacement

- **Sampling with replacement:**
 - A unit is selected at random from the population and it is returned to the main lot before the second unit is selected
 - The two sample values are independent
 - What we get on the first one doesn’t affect what we get on the second

- **Sampling without replacement:**
 - A unit is selected at random from the population and it is not returned to the main lot
 - The two sample values aren’t independent
 - What we got on the first one affects what we can get for the second one

Some Random Sampling Techniques

- **Sampling Design**
 - Simple
 - Complex (CRS)

- **Number of stages**
 - Single
 - Multiple
Simple Random Sample (SRS)

- Each unit in the population has an equal chance of being selected
- Simple but requires a complete listing of the population of interest

Systematic Sample

- Proxy for SRS when no list of the population exists or the list is in roughly random order
- Identify the length of sampling interval
- Selecting the first unit on a random basis from an interval
- Selecting additional elementary units at evenly spaced intervals
Some Random Sampling Techniques:

Systematic Sample

- Similar to SRS but easier in the field setting
- Need to make sure that the sampling frame is not sorted according to a cycle coinciding with the sampling interval (step size)
- Sampled units are dispersed across the entire geographic spread of the population
- \(k = \frac{N}{n} \) is the step size
 \[1 \leq R \leq k \text{ where } R \text{ random number} \]
 \[\Rightarrow \text{Sample } R, R+k, R+2k, \ldots, R+(n-1)k \]

Some Random Sampling Techniques:

Stratified Sample

- Group study population into non-overlapping strata
- Independently selecting a separate simple random sample from each stratum
- Used to:
 - Ensure proportional representation for each stratum
 - Decrease sampling variability
 - Yield sufficient number of a subpopulation in the sample
Some Random Sampling Techniques: *Stratified Sample*

- Distribution of sampling units across strata:
 - Proportional allocation
 - Equal allocation
 - Oversampling from a stratum
 - Optimal allocation
- Homogenous strata ➔ Increase precision

Some Random Sampling Techniques: *Cluster Sample*

- Selecting groupings/clusters from the population on the basis of simple random sampling
- Take a census of units within each selected cluster ➔ reduces travel due to proximity of units in cluster
- Units in cluster are highly correlated ➔ loss of precision
 ➔ Increasing number of clusters increases the precision
Some Random Sampling Techniques:

Cluster Sample

- Used when listing of clusters is available while a list of all population units is not available

![Diagram of Cluster Sample]

Some Random Sampling Techniques:

Multi-Stage Sample

- Simple version: Two-stage sampling
 - Select clusters as Primary Sampling Units (PSU)
 - Select members within the selected clusters as Secondary Sampling Units (SSU)

![Diagram of Multi-Stage Sample]
Some Random Sampling Techniques:

Multi-Stage Sample

- **Advanced Version**
 - Stage 1: Sample counties within region
 - Stage 2: Sample segments
 - Stage 3: Sample neighborhoods
 - Stage 4: Sample households

Complex Design Effect

![Graph showing Complex Design Effect](image)

- Serial
- SRS variance

Sample Size
Questions & Answers

Quick Comparison

<table>
<thead>
<tr>
<th></th>
<th>SRS / Systematic</th>
<th>Stratified</th>
<th>Cluster</th>
<th>Multi-stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling frame</td>
<td>Listing</td>
<td>Listing with stratifying variable</td>
<td>Listing of clusters</td>
<td>Listing of primary sampling units</td>
</tr>
<tr>
<td>Benefits</td>
<td>Simple Self-weighted</td>
<td>Improve Efficiency Subpopulation analysis</td>
<td>No element listing needed</td>
<td>No element listing needed Reduce travel time Improves efficiency</td>
</tr>
<tr>
<td>Costs</td>
<td>Information to stratify Weighting</td>
<td>Increase sampling error</td>
<td>Increase sampling error</td>
<td></td>
</tr>
</tbody>
</table>
Sample Size

• Sample size can be determined by various constraints:

 - Funding/Cost
 - How heterogeneous a universe is sampled
 - Desired precision of the estimate(s)
 - Tolerable error of the estimates (power of analysis)
 - Nature of the analysis to be performed
 - Kind and number of comparisons that will be made
 - Number of variables that have to be examined simultaneously

Sample Size

- **Infinite Population**

 \[n_0 = \frac{Z^2 \sigma_f^2}{e^2} \]

- **Finite Population**

 \[n = n_0 \frac{N}{N + n_0} \]

- E.g. Estimating a proportion, 95% CI \((Z_{1.96}^2 = 1.96)\), 3% margin of error, \(S^2 = 0.25\) \(\Rightarrow n_0 = 1067\)

 With \(N = 1251\) then \(n = 576\)

- **Note:** Adjust sample size to account for expected non-response
Efficient Sample Size

- Efficient sample size is *the sample size required to achieve a certain precision of the estimate from the sample (reducing variability)*

- Efficient sample size assumes an SRS
 - Sampling variability
 - increases with cluster sampling
 - Decreases with stratified sampling

Design Effect

- Design Effect ($deff$) is used if the sample deviates from SRS
 \[
 deff = \frac{\text{Variance}(\text{CRS})}{\text{Variance}(\text{SRS})}
 \]

- The $deff$ impacts efficient sample size needed
For stratified samples:
- deff is expected to be <1
- Depends on variability between strata and homogeneity within stratum

For cluster samples:
- deff is expected to be > 1
- Depends on: difference between cluster mean and overall mean, heterogeneity of the clusters, number of clusters selected

Post-Sampling Steps

Use of weights
- Needed when sample not selected with equal probabilities
 \[\text{weight} = \frac{1}{\text{Probability of Selection}} \]

- To adjust for sampling bias
- Depends on the unit of analysis
Post-Sampling Steps

- To post-stratify
 \[
 \text{weight} = \frac{\text{Population proportion}}{\text{Sample proportion}}
 \]
- Analyze the difference between weighted & un-weighted results.

- Non-Response Evaluation & Adjustment
 - Non-response creates non-sampling bias due to omission from sample
 - Study non-response if feasible
 - Adjust for non-response if deemed adequate

Post-Sampling Steps

- Standard error (SE)
 - needed for descriptive and analytical results
 - SE are measures of variability \(\Rightarrow \) determine precision
 - Requires complex calculations in many cases (beyond scope)
Sampling & Non-sampling Error

Total Survey Error

- Sampling
- Non-sampling/Systematic
- Coverage
- Measurement
- Non-Response

Sampling Error

• Sources:
 • Chance/luck of the draw when choosing a sample
 – Likely impact of sampling error usually quantified using the standard Error (SE)
 – The SE can be estimated using
 – sample design
 – sample data
 • Poor sampling plan
Non Sampling Error:
1. Coverage

- Some members in the population do not have a known non zero chance of being included in the sample
- If members included in the sample are different from excluded
- Survey mode not providing adequate coverage (e.g. Phone, internet)
- Frame error (e.g. incomplete frame, duplications, contaminated)

Non Sampling Error:
2. Measurement

- If respondent answer is inaccurate or imprecise
- Result of questionnaire design and wording
- Mode and instructions/training
- Interviewer effect
Non Sampling Error:
3. Non-Response

• Unit non-response: Not everyone in the sample responds (unreachable, refusal, etc.)
 - Respondents differ from non-respondents
 - Design of implementation system (reach respondents, encourage them to respond)

Non Sampling Error:
3. Non-Response

• Item non-response: Those who respond to the survey do not answer all questions
 - Incomplete data
 - Questionnaire design and interviewer training
References

Questions & Answers
E-mail: Amer-Safa@norc.org

Thank You!

Insight for informed decisions™