Stats for Staffers Presents: Regression Analysis

Michael Costello
RTI International
Washington Statistical Society
American Statistical Association
What we will cover

1. What is regression?
2. Simple Linear Regression
3. General Statistics Aside
4. Multiple Regression
5. Logistic Regression
What is regression and why do we use it?

• Focuses on the relationship between a dependent variable (Y) and one or more independent variables (X).

• Estimates the conditional expectation of the dependent variable, given the independent variables.

• To determine the strength of a relationship between variables.
Simple Linear Regression Takeaways

• Knowing about more than just one variable can help us more accurately predict future events.

• The Least Squares Regression Line (LSRL or OLS) is the linear best fit model for a dataset.

• Math: $y = mx + b$
Statistics: $y = a + bx$
$$y = b_0 + b_1x_1 + b_2x_2 + \ldots$$
Knowing when your model is good

- Look at the correlation coefficient (r) and the coefficient of determination (R^2)
- Examine the slope of the line
- Examine the residuals
Knowing when your model is good

- Look at the correlation coefficient \((r) \) and the coefficient of determination \((R^2) \)
- Examine the slope of the line
- Examine the residuals
Knowing when your model is good

I used to think correlation implied causation.

Then I took a statistics class. Now I don't.

Sounds like the class helped.

Well, maybe.
Knowing when your model is good

Correlation doesn't imply causation, but it does waggle its eyebrows suggestively and gesture furtively while mouthing 'look over there.'
Regression Formulas

- **Slope:** \(b = \frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sum(x_i - \bar{x})^2} = r \frac{s_y}{s_x} \)

- **Y-intercept:** \(a = \bar{y} - b \bar{x} \)
Looking at Residuals
Looking at Residuals
Looking at Residuals

Residuals

0

x values
Looking at Residuals

![Graph showing residuals from a quadratic model against temperature.](image-url)
General Statistical Aside

- Parameter vs. Statistic –
General Statistical Aside

- Parameter vs. Statistic – Population vs. Sample Information
General Statistical Aside

- Parameter vs. Statistic – Population vs. Sample Information
- Standard Deviation –
General Statistical Aside

- Parameter vs. Statistic – Population vs. Sample Information
- Standard Deviation – Deviation of the data from the mean.
General Statistical Aside

• Parameter vs. Statistic – Population vs. Sample Information
• Standard Deviation – Deviation of the data from the mean.
• Standard Error –
General Statistical Aside

- Parameter vs. Statistic – Population vs. Sample Information
- Standard Deviation – Deviation of the data from the mean.
- Standard Error – Deviation of possible means from the current mean we see in our sample.
General Statistical Aside

- Parameter vs. Statistic – Population vs. Sample Information
- Standard Deviation – Deviation of the data from the mean.
- Standard Error – Deviation of possible means from the current mean we see in our sample.
- t-Statistic –
General Statistical Aside

- Parameter vs. Statistic – Population vs. Sample Information
- Standard Deviation – Deviation of the data from the mean.
- Standard Error – Deviation of possible means from the current mean we see in our sample.
- t-Statistic – The number of standard deviations / standard errors a dataset’s mean is from the expected mean.
General Statistical Aside

- P-Value –
General Statistical Aside

• P-Value – The probability of observing our dataset mean (or one more extreme) when the expected mean is actually true.
General Statistical Aside

• P-Value – The probability of observing our dataset mean (or one more extreme) when the expected mean is actually true.

• Confidence Interval –
General Statistical Aside

- **P-Value** – The probability of observing our dataset mean (or one more extreme) when the expected mean is actually true.
- **Confidence Interval** – Estimate of a parameter, used to indicate an estimate’s reliability.
SUMMARY OUTPUT

<table>
<thead>
<tr>
<th>Regression Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple R</td>
</tr>
<tr>
<td>R Square</td>
</tr>
<tr>
<td>Adjusted R Square</td>
</tr>
<tr>
<td>Standard Error</td>
</tr>
<tr>
<td>Observations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Regression</td>
</tr>
<tr>
<td>Residual</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>Standard Error</th>
<th>t Stat</th>
<th>P-value</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>16.17957577</td>
<td>2.986473768</td>
<td>5.417619</td>
<td>10.28397657</td>
<td>22.07517497</td>
</tr>
<tr>
<td>democA</td>
<td>2.374906018</td>
<td>1.156002059</td>
<td>2.054413</td>
<td>0.041475</td>
<td>4.656970199</td>
</tr>
<tr>
<td>prtystrA</td>
<td>0.215889774</td>
<td>0.057858766</td>
<td>3.731323</td>
<td>0.00026</td>
<td>0.33010879</td>
</tr>
<tr>
<td>shareA</td>
<td>0.435885557</td>
<td>0.016375789</td>
<td>26.61768</td>
<td>2.43E-62</td>
<td>0.46821309</td>
</tr>
</tbody>
</table>
Regression Tables in Excel, Stata, etc.

```
.regress voteA democA prtystrA shareA
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>42017.405</td>
<td>3</td>
<td>14005.8017</td>
</tr>
<tr>
<td>Residual</td>
<td>6439.84358</td>
<td>169</td>
<td>38.1055833</td>
</tr>
<tr>
<td>Total</td>
<td>48457.2486</td>
<td>172</td>
<td>281.728189</td>
</tr>
</tbody>
</table>

Number of obs = 173
F(3, 169) = 367.55
Prob > F = 0.0000
R-squared = 0.8671
Adj R-squared = 0.8647
Root MSE = 6.173

| voteA | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|--------|-----------|-------|------|----------------------|
| | | | | | |
| democA| 2.374906| 1.156002 | 2.05 | 0.041| .0928418 4.65697 |
| prtystrA| .2158898| .0578588 | 3.73 | 0.000| .1016708 .3301088 |
| shareA| .4358856| .0163758 | 26.62 | 0.000| .4035581 .468213 |
| _cons | 16.17958| 2.986474 | 5.42 | 0.000| 10.28398 22.07517 |
Multiple Regression

- When we have more than one x-variable
- Dummy or Binary X Variables
- Examples
Logistic Regression

- When our Independent variable (Y) is binary
- Produces an odds ratio
- Examples
Logistic Regression

- \(\pi = \text{probability of success} \)
- Logit form: \(\log \left(\frac{\pi}{1-\pi} \right) = \beta_0 + \beta_1 x \)
- Probit Form: \(\pi = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} \)
Logistic Regression

```
. logit oral_read_score_zero grade female grade_size
Logistic regression                                Number of obs =       3012
LR chi2(3)      =    1099.06 Prob > chi2     =     0.0000
Log likelihood =  -1294.945                       Pseudo R2       =     0.2979
                      -------------------------------------------------------------------------------
oral_read_score_zero |   Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                      -------------------------------------------------------------------------------
     grade |  -1.666301   .0677756   -24.59   0.000    -1.799139   -1.533463
    female |   .1271608   .0964876     1.32   0.188    -.0619515     .316273
       _cons |    6.35269   .2712615    23.42   0.000     5.821027    6.884353
                      -------------------------------------------------------------------------------
. logistic oral_read_score_zero grade female grade_size
Logistic regression                                Number of obs =       3012
LR chi2(3)      =    1099.06 Prob > chi2     =     0.0000
Log likelihood =  -1294.945                       Pseudo R2       =     0.2979
                      -------------------------------------------------------------------------------
oral_read_score_zero |   Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                      -------------------------------------------------------------------------------
     grade |   .1889447   .0128058   -24.59   0.000     .1654413     .215787
    female |     1.1356   .1095713     1.32   0.188     .9399285    1.372005
       _cons |   574.0349   155.7136    23.42   0.000     337.3184    976.8693
                      -------------------------------------------------------------------------------
```
More Information

Michael Costello
202.728.2487
mcostello@rti.org