Strengthening the Science in Forensic Science

JSM 2016 – Chicago, Illinois

Hal Stern
Department of Statistics
University of California, Irvine
sternh@uci.edu
A community in transition
Discussion - Kafadar

• Eyewitness identification is error-prone
 – Innocence Project results are striking

• Memory of witnesses is affected by a wide range of factors
 – Case-related (age, conditions, distance, time elapsed, etc.)
 – Procedural (line-up, instructions, feedback, etc.)

• Important role for experimental design
 – Use design principles in developing appropriate procedures
 (blinding, obtain EW input promptly)
 – Statistical designs for evaluating procedures
 (simultaneous/sequential, role of jury instructions)

• Statistical modeling strategies – find relevant covariates (e.g.,
 confidence of witness)

• Statistical analysis tools – use of ROC curves, logistic models
 for studying eyewitness accuracy
Discussion - Winkel

- Firearms (also toolmarks) – e.g., matching cartridge cases
- Very common form of “pattern evidence”
- Standard approach
 - Practitioner identifies regions of interest in crime-scene casing images (questioned)
 - Practitioner examines analogous regions in test-fire casing images from suspect weapon (known)
 - If sufficiently similar, examiner is likely to identify the weapon as the source of the crime-scene casing (“an identification”)
 - But … How likely is it to obtain similar markings from another weapon
- Here a distance-measure is developed
 - Need to assess distribution of distances among casings fired from same gun
 - Need to assess distribution of distances among cases fired from different guns (e.g., how do we sample these?)
Discussion - Neumann

- Fingerprints – pattern evidence that is relevant in many, many cases
- Standard approach similar to what was previously described for firearms
- Neumann and collaborators are leading the efforts to develop Bayes factors (likelihood ratios) for latent prints
 - $BF = \frac{Pr(E | H_p)}{Pr(E | H_d)}$
 - BF assists trier of fact to assess evidence and update beliefs about H_p and H_d
 - BFs are challenging for pattern evidence
 - Data is high-dimensional
 - Great deal of flexibility in identifying features
 - Not obvious what probability models to use
 - How to represent the “relevant population” in the denominator
- Today – Linear random effects model to build Bayes factor based on inter-feature distances
 - Statistical questions:
 - Does parameterization in terms of tau’s help? Perhaps just underlying “true” d_{ij}.
 - Dependence among multiple measures involving the same feature (e.g., one point distorted in the print)
Discussion - Spiegelman

- Biomarkers (e.g., genetic predictor of disease) and Forensic markers (e.g., evidence of arson at a fire scene)
- A critical statistician’s perspective – we can bring experience from one discipline to another
- Important lessons to consider
 - Statistical samples rather than anecdotal evidence
 - Study sample should be representative of the population of interest
 - Appropriate variability
 - Danger of selective sampling
 - How do we convey uncertainty?
- Two relevant forensic disciplines
 - Arson – older anecdotal theories about indicators of arson not supported by current understanding and test fires
 - Blood pattern analysis – absence of studies with known truth (e.g., was this pattern causes by a bullet)
Statistics in Forensic Science

- Studies that provide information about the forensic evidence type under study
 - Determinants of eyewitness accuracy
 - Effect of judge’s instructions on jury weighing of eyewitness testimony
 - Test fires in arson

- Studies of the reliability and accuracy of forensic examiners
 - Reliability
 - Does a given forensic examiner reach the same conclusion given the same data
 - Do different forensic examiners reach the same conclusion from a given data set
 - Accuracy
 - How well do examiners do in cases with known ground truth (black box study)
 - Role of Context (non task-relevant information)

- Developing quantitative approaches to the evaluation and interpretation of evidence
 - Likelihood ratio / Bayes factors
How can I get involved?

• ASA Advisory Committee on Forensic Science (Chair: Karen Kafadar, Vice-Chair: Hal Stern)

• Organization of Scientific Area Committees (OSAC) for Forensic Science – aiming for a statistician on each subcommittee

• Questions?

• Contact: sternh@uci.edu