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History

Review

Discussed Hume’s definition and Lind’s experiment.

Discussed Neyman’s potential outcomes for inference with
randomized treatments.

Two schools of thought on causality since then

Graph based (Wright’s pedigree analysis to structural equation models).
Potential outcome based (Neyman to Rubin: conditionally ignorable
models, etc.)

Dichotomy exists in the field to this day.

Today we see why the dichotomy is false!

Today we also see how statistical and causal DAGs are different.
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History

Review: Conditional Ignorability

Assume an observed vector of baseline factors/confounders U, binary
treatment A, outcome Y .

Assume both potential outcomes on Y : Y (1),Y (0).

Consistency Y = Y (A) and conditional ignorability
{Y (1),Y (0)} ⊥⊥ A | U.

Had an informal picture:

A a

U

Y (a)

Have two versions of A, one represents assignment probability, and
one hypothetical assignment.

Conditional ignorability follows by d-separation.
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History

Review: Structural Equation Models

Assume linear regression for every variable given parents:

Y = w0 +
∑
Xi

wi · Xi + εY
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Functions of coefficients as degrees of inbreeding, total, and mediated
effects.
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Causal Models Of A DAG

Generalizing Structural Equation Models

Obvious point: no particular reason to do linear models.

Can use any model at all to relate Y and paG(Y ).

The trick is not being confused about what hypothetical experiments
mean.

The result is Pearl’s functional model or non-parametric structural
equation model (with independent errors) (NPSEM-IE).
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Causal Models Of A DAG

Non-Parametric Structural Equation Model

Given a DAG G, for every variable X , posit a mechanism fX and noise
term εX .

These determine value of X in terms of values of parents of X :

X ← fX (paG(X ), εX ).

Functions are unrestricted.

Note: imperative assignment, not equality!

Assume independent (not necessarily Gaussian) errors:

Note: if ε are fixed, the model is entirely deterministic.
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p(εX1 , . . . εXk
) =

k∏
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p(εXi
).
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Causal Models Of A DAG

Observed Distributions in the NPSEM-IE

What is p(~X = ~x) for an NPSEM-IE of a DAG G?

p(~X = ~x) =
∏
X∈~X

∑
{εX :fX (~xpaG (X ),εX )=~xX }

p(εX )

In words: add up all probability mass of ε variables that make f create
observed ~x .

Basically equivalent to computing∏
X∈~X

p(X | paG(X )).

Different from Bayesian networks since we can deal with interventions.
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Causal Models Of A DAG

Interventions in the NPSEM-IE

Recall, imperative assignment:

X ← fX (paG(X ), εX ).

We allow external changes to model, where any X is assigned to a
constant instead:

X ← x .

Note: everything else stays the same!

Have a new model where some functions are now constants.

How does this model behave?
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Causal Models Of A DAG

Post-Intervention Distributions in the NPSEM-IE

Say ~x is an assignment to all variables ~X \ {A}.
What is p(~X \ {A} = ~x | do(A = a)) (a distribution over X (a) for all
X ∈ ~X \ {A}) for an NPSEM-IE of a DAG G?

Replace fA by “A← a.” Recompute as usual.

Define ~x∗ as ~x for all variables that are not A and a for A.

p(~X \ {A} = ~x | do(X = a)) =
∏

X̃∈~X\{A}

∑
{εX̃ :fX̃ (~x

∗
paG (X̃ )

,εX̃ )=~xX̃ }

p(εX̃ )

Basically equivalent to computing∏
X̃∈~X\{A}

p(X̃ | paG(X̃ ))|A=a

This formula is very important, we will come back to it later.

10 / 1



Causal Models Of A DAG

NPSEM-IE: A Familiar Example
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Causal Models Of A DAG

Generalizing Ignorable Models

Obvious point: no particular reason ignorability or conditional
ignorability should hold.

How do we impose arbitrary restrictions on counterfactuals?

Lots of approaches, but we will use DAGs to avoid being confused.

Humans tend to have a strong visual system, weak algebraic system.

Hard to think about a big set of algebraic constraints.

Easy to think about a graph!
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Causal Models Of A DAG

Counterfactual Model On A DAG

Given a DAG G, for every variable X , posit existence of a set of
potential outcome random variables: X (paG(X )).

Assume consistency as usual: X (A) = X .

Derive other potential outcomes using recursive substitution:

X (~a) = X (paG(X ) ∩ ~A = ~a, {paG(X ) \ ~A}(~a)).

Example: Y (a) = Y (M(a), a).
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Causal Models Of A DAG

Assumpions on Counterfactuals

Only assumed consistency so far.

Will also assume {
{V (~aV ) | ~aV ∈ XpaG(V )}

∣∣∣V ∈ ~V
}

are mutually independent. (X~S
is state space of variables in ~S).

Example: A ⊥⊥ M(a) ⊥⊥ Y (m, a′) for all a, a′,m.

Implies conditional ignorability: Y (m) ⊥⊥ M(A) | A.

14 / 1



Causal Models Of A DAG

Assumpions on Counterfactuals

Only assumed consistency so far.

Will also assume {
{V (~aV ) | ~aV ∈ XpaG(V )}

∣∣∣V ∈ ~V
}

are mutually independent. (X~S
is state space of variables in ~S).

Example: A ⊥⊥ M(a) ⊥⊥ Y (m, a′) for all a, a′,m.

M

A

Y

Implies conditional ignorability: Y (m) ⊥⊥ M(A) | A.

14 / 1



Causal Models Of A DAG

Assumpions on Counterfactuals

Only assumed consistency so far.

Will also assume {
{V (~aV ) | ~aV ∈ XpaG(V )}

∣∣∣V ∈ ~V
}

are mutually independent. (X~S
is state space of variables in ~S).

Example: A ⊥⊥ M(a) ⊥⊥ Y (m, a′) for all a, a′,m.

M

A

Y

Implies conditional ignorability: Y (m) ⊥⊥ M(A) | A.

14 / 1



Causal Models Of A DAG

Two Definitions Of The Same Model

Structural equations and counterfactuals give the same model –
NPSEM-IE.

Random variable X (paG(X )) is given by fX (paG(X ), εX ).

Counterfactual Independence assumption{
{V (~aV ) | ~aV ∈ XpaG(V )}

∣∣∣V ∈ ~V
}

is equivalent to independent errors assumption

p(εX1 , . . . εXk
) =

k∏
i=1

p(εXi
).

If you like random variables, use counterfactual view, if you like
mechanisms, use structural equations.

Both are useful.
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Causal Models Of A DAG

The G-Formula

Causal models of DAGs are very nice.
For any ~Y , ~A ⊆ ~V , can express p( ~Y (~a)) as a function of observed
data.

p( ~Y (~a)) =
∑

~V \(~Y∪~A)

∏
V∈ ~V \~A

p(V | paG(V ))
∣∣∣
~A=~a

.

Intuition: dropping terms that are not causally relevant
post-intervention.
Example: p(V5(v2 = 1, v4 = 0)) is equal to∑

V1,V3

p(V5 | v4 = 0,V3, v2 = 1,V1)p(V3 | v2 = 1,V1)p(V1) in:

V1 V2 V3 V4 V5

Recovers what we did earlier.
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Single World Intervention Graphs

Counterfactual Independences From A Graph

Learned that DAGs represent independences in observed data
distribution.

Independences defining causal model are not on observed variables,
but on counterfactuals.

Cannot use original graph to read them off.

Another type of graph works: Single World Intervention Graphs
(SWIGs).

Saw simple examples already:

A a Y (a) A a

U

Y (a)
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Single World Intervention Graphs

Sequential Treatment Settings

Many causal problems are “games against Nature.”

We act (assign treatment), then Nature acts, then we act again, etc.

A0 L1 A1 L2

Many observational datasets are generated in this way (observational
studies, healthcare data, etc.)

Want to estimate causal effects here, e.g.
E [Y (a1, a0)]− E [Y (a′1, a

′
0)].

Will assume consistency, but need other assumptions.

Is (conditional) ignorability true here?

No. How to derive assumptions from a graph?
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Single World Intervention Graphs

Constructing SWIGs (Sequential Treatment Example)

Start with observed data graph:

A0 L1 A1 L2

Step 1: split treatments (A1,A2) into constant and random pieces.

Step 2: constant pieces inherit outgoing edges, random pieces inherit
incoming edges.

Step 3: relabel downstream variables as counterfactuals.

Read off independences by d-separation:
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Single World Intervention Graphs

Constructing SWIGs (Sequential Treatment Example)

Start with observed data graph:

A0 L1 A1 L2

Step 1: split treatments (A1,A2) into constant and random pieces.
Step 2: constant pieces inherit outgoing edges, random pieces inherit
incoming edges.
Step 3: relabel downstream variables as counterfactuals.

A0 a0 L1(a0) A1(a0) a1 L2(a0, a1)

Read off independences by d-separation:

L2(a0, a1) ⊥⊥ A1(a0) | L1(a0),A0

{L2(a0, a1), L1(a0)} ⊥⊥ A0
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Single World Intervention Graphs

A Causal Model Corresponds To Multiple SWIGs

{L2(a0, a1), L1(a0)} ⊥⊥ A0

due to:

A0 a0 L1(a0) A1(a0) a1 L2(a0, a1)

L2(a1) ⊥⊥ A1 | L1,A0

due to:

A0 L1 A1 a1 L2(a1)
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Single World Intervention Graphs

Identifying Two Treatment Effect Using ⊥⊥ From SWIGs

p(L2(a0, a1)) =p
∑
l1

p(L2(a0, a1) | L1(a0) = l1)p(L1(a0) = l1)

=1
∑
l1

p(L2(a0, a1) | L1(a0) = l1, a0)p(L1(a0) = l1 | a0)

=c
∑
l1

p(L2(a1) | l1, a0)p(l1 | a0)

=2
∑
l1

p(L2(a1) | A1 = a1, l1, a0)p(l1 | a0)

=c
∑
l1

p(L2 | a1, l1, a0)p(l1 | a0)

{L2(a0, a1), L1(a0)} ⊥⊥ A0 (1)

L2(a1) ⊥⊥ A1 | L1,A0 (2)
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Single World Intervention Graphs

Games Vs Nature

General version of the “game vs Nature” (k treatments, k outcomes).

L0 A0 L1 A1 L2 . . . Ak Lk+1

Interested in E [Lk+1(a1, . . . , ak)]− E [Lk+1(a′1, . . . , a
′
k)], other things.

Could identify this for k = 2. Can we do this in general?

Yes, via the g-computation algorithm.
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Single World Intervention Graphs

G-Computation (Old Way)

Can derive the following assumptions (sequential ignorability) using
SWIGs:

(∀i ∈ {1, . . . , k + 1}) ({Li (a<i ), . . . , Lk+1(a<k+1)} ⊥⊥ Ai−1 | past of Ai−1) .

L0 A0 L1 A1 L2 . . . Ak Lk+1

Notation: L<i = {L1, . . . , Li−1}, A<i = {A1, . . . ,Ai−1},
past of Ai = L<(i−1) ∪ A<i .
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Single World Intervention Graphs

G-Computation Derivation

(∀i ∈ {1, . . . , k + 1})
({

Li (a<i ), . . . , Lk+1(a<(k+1))
}
⊥⊥ Ai−1 | past of Ai−1

)
implies p(Lk+1(a0, . . . , ak)) is equal to

∑
L<(k+1)

k+1∏
i=1

p(Li (a<i ) | L<i (a<(i−1)))

This is just g-formula. Why did we do this the hard way?

One reason is to give you an idea for why g-formula is true.

There is another reason we will revisit when we talk about hidden
variables.
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Single World Intervention Graphs

Estimation For G-Computation

Target:
∑

L<(k+1)

(∏k+1
j=0 p(Lj | L<j , a<j)

)
.

What we did with k = 1: model outcome mean (parametric
g-formula), or model propensity score (IPW).

Can generalize to any k!
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Single World Intervention Graphs

Parametric G-Formula For Multiple Treatments

Target:
∑

L<(k+1)

(∏k+1
j=1 p(Lj | L<j , a<j)

)
.

The parametric g-formula way is to model p(Lj | L<j , a<j) for each j .

For Lk+1 term can model expectation of Lk+1, for other terms we
model densities.

Density estimation is harder than mean estimation.

Have to evaluate intractable sums/integrals for large k!
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Single World Intervention Graphs

Sequential Parametric G-Formula Step By Step Guide

Given n data points on ~A,L, and assuming sequential ignorability and
consistency:

1 Posit statistical models for p(Lj | A<j , L<j ;αj) for j = 1, . . . , k + 1.
2 Fit models by MLE, yielding α̂j , j = 1, . . . , k − 1.
3 Obtain E [Lk+1(~a)] by:

For every row i = 1, . . . , n, and timepoint j = 1, . . . , k + 1, sequentially
sample mi th sample of r total:
Lmi

j ∼ p(Lj | ~a<j , L
i
0, L

mi
1 , . . . , L

m
j−1; α̂j)

return
1

n · r

n∑
i=1

∑
mi

Lmi

k+1

4 Report confidence intervals using bootstrap. May compute in closed
form sometimes, will skip for now.

Note: Do sampling twice! Once to evaluate integral for

E [Lk+1(~a)] =
∑

L<(k+1)

(∏k+1
j=1 p(Lj | L<j , a<j)

)
.

And once to obtain confidence intervals for E [Lk+1(~a)].

27 / 1



Single World Intervention Graphs

Sequential Parametric G-Formula Step By Step Guide

Given n data points on ~A,L, and assuming sequential ignorability and
consistency:

1 Posit statistical models for p(Lj | A<j , L<j ;αj) for j = 1, . . . , k + 1.
2 Fit models by MLE, yielding α̂j , j = 1, . . . , k − 1.
3 Obtain E [Lk+1(~a)] by:

For every row i = 1, . . . , n, and timepoint j = 1, . . . , k + 1, sequentially
sample mi th sample of r total:
Lmi

j ∼ p(Lj | ~a<j , L
i
0, L

mi
1 , . . . , L

m
j−1; α̂j)

return
1

n · r

n∑
i=1

∑
mi

Lmi

k+1

4 Report confidence intervals using bootstrap. May compute in closed
form sometimes, will skip for now.
Note: Do sampling twice! Once to evaluate integral for

E [Lk+1(~a)] =
∑

L<(k+1)

(∏k+1
j=1 p(Lj | L<j , a<j)

)
.

And once to obtain confidence intervals for E [Lk+1(~a)].
27 / 1



Single World Intervention Graphs

Sequential Parametric G-Formula Pros/Cons

Pros:

Most efficient thing to do if you know the models.
Seems fairly robust to misspecification in practice.
Can do in closed form for simple models.
Conceptually simple: special case of likelihood weighting after
g-formula is applied.

Cons:

Have to do a lot of modeling.
Intractable in general.
Sampling is computationally intensive (Bayesians can avoid sampling
twice – why?)
Sampling trajectories can be unstable (more on this in dynamic
Bayesian network literature).
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Single World Intervention Graphs

Doing Sums Efficiently?

In machine learning, ⊥⊥ are exploited to perform intractable sums
efficiently using belief propagation.

Not doing this here, why? Two reasons.

1 ⊥⊥ = missing edges. Often no reason to expect missing edges in most
causal inference problems!

Example: patient current state depends on entire case history.

Sometimes can redefine state to get a Markov property.

2 We will revisit a second reason when we talk about hidden variables:
“Verma constraints.”
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Single World Intervention Graphs

IPW For Multiple Treatments

Target:
∑

L<(k+1)

(∏k+1
j=1 p(Lj | L<j , a<j)

)
.

The IPW way is to model p(Aj | L<j , a<j) for each j .

Aj are typically binary, so no need to model densities.

Method is called marginal structural models.
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Single World Intervention Graphs

What Is A Structural Model?

A statistical model is a set of densities under restrictions.

Used to restrict observed data distribution.

Example: E [Y | ~x ] = w0 +
∑

i wixi .

A causal model is a set of (counterfactual) densities under (⊥⊥)
restrictions.

Example: NPSEM-IE.

A structural model is (loosely) a parametric model but for
counterfactuals.

Examples: E [Y (a1, a2)] = w0 + w1a1 + w2a2,
E [Y (a1, a2) | X ] = w0 + w1a1 + w2a2 + wxX + w2×xa2x .

Cannot fit structural models directly from data!
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Marginal Structural Model (MSM)

A marginal structural model is an assumption on a specific
counterfactual marginal (usually outcome):

E [Lk+1(a1, a2, . . . , ak)] = w0 +
k∑

i=1

wiai

Cannot do regression on p(~A,L) directly, since
E [Lk+1(a1, a2, . . . , ak)] 6= E [Lk+1 | a1, a2, . . . , ak ].

Under sequential ignorability and consistency, can reweigh the data
first using p(aj | a<j , L<j), then use a regression model.

Many regression models allow rows to be weighted (R language’s
glm(.) function has a weights argument).
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Sequential IPW (MSM) Step By Step Guide

Given n data points on ~A,L, and assuming sequential ignorability and
consistency:

1 Posit statistical models for p(Aj | A<j , L<j ;βj) for j = 1, . . . , k + 1.

2 Fit models by MLE, yielding β̂j , j = 1, . . . , k − 1.

3 Posit marginal structural model for E [Lk+1(a1, a2, . . . , ak); γ].

4 Obtain E [Lk+1(a1, a2, . . . , ak)] by:

For every row i = 1, . . . , n, and every j = 1, . . . , k , evaluate
p(aj | Li<j , a<j ; β̂j).
Fit E [Lk+1(a1, a2, . . . , ak); γ] by weighted MLE, with each row i having
weight

1∏k
j=1 p(aj | a<j , Li<j ; β̂j)

,

return predicted E [Lk+1(a1, a2, . . . , ak); γ̂].

5 Report confidence intervals using bootstrap.
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Single World Intervention Graphs

More on Sequential IPW

Why do we need a structural model for Lk+1 at all?

We didn’t for k = 1!

Remember for k = 1, IPW reweighted Y for which I(A = a) = 1.

For large k, number of rows where I(~A = ~a) goes to 0.

For small k , may not need a model.
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Single World Intervention Graphs

Sequential IPW (MSM) Pros/Cons

Pros:

Easy modeling problem (binary treatments).
Easy to fit MSMs (regression models allow row weights), no extra
programming!
Computationally efficient

Cons:

Statistically inefficient (big intervals).
Severe instability issues (dividing by products of small numbers).

Very popular in practice because of simplicity.
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Single World Intervention Graphs

Other Estimation Strategies

As with single treatment case, there are other estimation strategies
than IPW and parametric g-formula.

Notable ones:

Robust methods: model both p(Lj | a<j , L<j) and p(aj | a<j , L<j).
Remain consistent if either Lj or Aj models are correct.
Structural nested models – more complicated structural models that
condition on the past.

Can you think of more? Open problem: likely more are possible,
perhaps with machine learning ideas!
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Single World Intervention Graphs

Next time: Causal DAG Models With
Hidden Variables.
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