
Causal Inference
CS 477-677

Causal Models With Hidden Variables

Ilya Shpitser

1 / 46

Outline

1 Review

2 Hidden Variable Example

3 G-Computation With Hidden Variables

4 Mixed Graphs And Latent Projections

5 Kernels

6 Fixing: Generalizing The G-Formula

7 The ID Algorithm (New Version)

8 Effect Modification

2 / 46

Review

Review

Causal models of a DAG.

The g-formula.

Mediation (splitting causal effects).

Estimation methods.

Only talked about dealing with hidden variables using instrumental
variables.

Hidden variables are a common problem in practice.

Let’s talk about how to handle them in general today!

3 / 46

Hidden Variable Example

First Example

Saw this example (without H1,H2) in homework extra credit.

These types of variables are very common

Think unobserved state where we get to see only parts L1, L2 (related
to Hidden Markov Models (HMMs)).

A0 L1 A1 L2

H1 H2

Interested in the ACE E [L2(a0, a1)]− E [L2(a′0, a
′
1)], as before.

Need ⊥⊥ assumptions to identify.

Let’s try to construct SWIGs for this problem.

4 / 46

Hidden Variable Example

SWIGs With No Hidden Variables

{L2(a0, a1), L1(a0)} ⊥⊥ A0

due to:

A0 a0 L1(a0) A1(a0) a1 L2(a0, a1)

L2(a1) ⊥⊥ A1 | L1,A0

due to:

A0 L1 A1 a1 L2(a1)

5 / 46

Hidden Variable Example

SWIGs With Hidden Variables

{L2(a0, a1), L1(a0)} ⊥⊥ A0

due to:

A0 a0 L1(a0) A1(a0) a1 L2(a0, a1)

H1 H2

L2(a1) ⊥⊥ A1 | L1,A0

due to:

A0 L1 A1 a1 L2(a1)

H1 H2

6 / 46

Hidden Variable Example

Same Derivation As Before

p(L2(a0, a1)) =p
∑
l1

p(L2(a0, a1) | L1(a0) = l1)p(L1(a0) = l1)

=1
∑
l1

p(L2(a0, a1) | L1(a0) = l1, a0)p(L1(a0) = l1 | a0)

=c
∑
l1

p(L2(a1) | l1, a0)p(l1 | a0)

=2
∑
l1

p(L2(a1) | A1 = a1, l1, a0)p(l1 | a0)

=c
∑
l1

p(L2 | a1, l1, a0)p(l1 | a0)

{L2(a0, a1), L1(a0)} ⊥⊥ A0 (1)

L2(a1) ⊥⊥ A1 | L1,A0 (2)

7 / 46

Hidden Variable Example

Hidden Variables: Friends Or Foes

In machine learning, hidden variables are your friends – they help you
to learn good representation of the data

Clustering
Representation learning
Latent variable graphical models (HMMs, Kalman filters, etc.)

In ML, assume whatever we like about hidden variables to get good
generalization error.

In causal inference, hidden variables are your enemies – they create
confounding.

Saw a simple example of a non-identified ACE due to a hidden U.

In causal inference, assume the worst – U is very large and
complicated.
Do not want to model U explicitly. Why?

No data on U.
No way to check if we are wrong – cannot use observed data!
Get severe bias if we are wrong.

8 / 46

Hidden Variable Example

Modeling Around Hidden Variables

Under

A0 L1 A1 L2

H1 H2

We get:

p(L2(a0, a1)) =
∑
l1

p(L2 | a1, l1, a0)p(l1 | a0)

Note: H1,H2 is not mentioned anywhere!

We assume the worst about H1,H2. Can’t test any model we assume.
Can’t cross-validate.

So model around them!

9 / 46

G-Computation With Hidden Variables

Games Vs Nature (Hidden Variable Version)

General version of the “game vs Nature” (k treatments, k outcomes).

L0 A0 L1 A1 L2
. . . Ak Lk+1

H0 H1 H2
. . . Hk

Interested in E [Lk+1(a1, . . . , ak)]− E [Lk+1(a′1, . . . , a
′
k)].

Could identify this with no H. Can we do this now?

Yes, via the same g-computation algorithm. Why?

10 / 46

G-Computation With Hidden Variables

Games Vs Nature (Hidden Variable Version)

General version of the “game vs Nature” (k treatments, k outcomes).

L0 A0 L1 A1 L2
. . . Ak Lk+1

H0 H1 H2
. . . Hk

Interested in E [Lk+1(a1, . . . , ak)]− E [Lk+1(a′1, . . . , a
′
k)].

Could identify this with no H. Can we do this now?

Yes, via the same g-computation algorithm. Why?

10 / 46

G-Computation With Hidden Variables

Games Vs Nature (Hidden Variable Version)

General version of the “game vs Nature” (k treatments, k outcomes).

L0 A0 a0 L1(a0) A1(a0) L2(a0) . . . Ak(a0) Lk+1(a0)

H0 H1 H2
. . . Hk

Interested in E [Lk+1(a1, . . . , ak)]− E [Lk+1(a′1, . . . , a
′
k)].

Could identify this with no H. Can we do this now?
Yes, via the same g-computation algorithm. Why?

10 / 46

G-Computation With Hidden Variables

Games Vs Nature (Hidden Variable Version)

General version of the “game vs Nature” (k treatments, k outcomes).

L0 A0 a0 L1(a0) A1(a0) a1 L2(a0, a1) Ak(a0, a1) Lk+1(a0, a1)

H0 H1 H2
. . . Hk

Interested in E [Lk+1(a1, . . . , ak)]− E [Lk+1(a′1, . . . , a
′
k)].

Could identify this with no H. Can we do this now?

Yes, via the same g-computation algorithm. Why?

10 / 46

G-Computation With Hidden Variables

G-Computation Assumptions Still Hold)

The following assumptions (sequential ignorability) still hold via
SWIGs:

(∀i ∈ {1, . . . , k + 1}) ({Li (a<i), . . . , Lk+1(a<k+1)} ⊥⊥ Ai−1 | past of Ai−1) .

L0 A0 L1 A1 L2
. . . Ak Lk+1

H0 H1 H2
. . . Hk

11 / 46

G-Computation With Hidden Variables

Sequential G-Formula Still Holds

Since same assumptions hold, derivation from last lecture still works:

p(Lk+1(a0, . . . , ak)) =
∑

L<(k+1)

k+1∏
j=0

p(Lj | L<j , a<j)


Observation due to Robins, 1986.

Assumptions are much more realistic – we allow a lot of confounding.

As before, we do not model Hi , assume the worst.

The big assumption is this: each Ai is determined by the observable
past only, not H.

Often makes sense – doctors decide based on what they observe.

12 / 46

G-Computation With Hidden Variables

Second Example

What if A is determined by H directly? Simple example:

A L1 L2

H

Interested in the ACE E [L2(a)]− E [L2(a′)], as before.

Need ⊥⊥ assumptions to identify.

Let’s try to construct SWIGs for this problem.

13 / 46

G-Computation With Hidden Variables

Second Example

What if A is determined by H directly? Simple example:

A L1 L2

H

Interested in the ACE E [L2(a)]− E [L2(a′)], as before.

Need ⊥⊥ assumptions to identify.

Let’s try to construct SWIGs for this problem.

A a L1(a) l1 L2(l1)

H

A L1 l1 L2(l1)

H

(1) L1(a) ⊥⊥ A (2) L2(l1) ⊥⊥ L1(a)

(3) L2(l1) ⊥⊥ L1 | A (4) L2(l1, a) = L2(l1).

13 / 46

G-Computation With Hidden Variables

Derivation

p(L2(a)) =p
∑
l1

p(L2(a)) | L1(a) = l1)p(L1(a) = l1)

=1
∑
l1

p(L2(a)) | L1(a) = l1)p(l1 | a)

=c
∑
l1

p(L2(a, l1)) | L1(a) = l1)p(l1 | a)

=4
∑
l1

p(L2(l1)) | L1(a) = l1)p(l1 | a)

=2
∑
l1

p(L2(l1))p(l1 | a)

=3
∑
l1

(∑
a′

p(L2 | l1, a′)p(a′)

)
p(L1 = l1 | a)

(1) L1(a) ⊥⊥ A (2) L2(l1) ⊥⊥ L1(a)

(3) L2(l1) ⊥⊥ L1 | A (4) L2(l1, a) = L2(l1).

14 / 46

G-Computation With Hidden Variables

Front-Door Formula

Counterintuitive: there is a latent H causing both A and Y , but we
can deal with it (!)

A L1 L2

H

p(L2(a)) =
∑
l1

(∑
a′

p(L2 | l1, a′)p(a′)

)
p(L1 = l1 | a)

Answer does not look like g-formula.

Shown by Pearl in 1995, called the front-door formula.

(Pearl called adjustment formula/conditional ignorability “back-door
formula.”)

We know sometimes H leads to non-identification.

When can we get identification even if H is there?

15 / 46

Mixed Graphs And Latent Projections

Dealing With Hidden Variables in General

First observation: different hidden variable DAGs can lead to same
derivation:

A L1 L2

H

A L1 L2

H1 H2

Why? Only use d-separation in SWIGs where we don’t mention H.

Want to combine multiple hidden variable DAGs (that share these
d-separation statements in all SWIGs) into one graph.

16 / 46

Mixed Graphs And Latent Projections

Latent Projections

Will use a generalization of a DAG called Acyclic Directed Mixed
Graphs (ADMGs).

Only has vertices corresponding to observed variables (all H vertices
removed).

Has two types of edges:

A→B (meaning A→H1→H2→ . . .→B via a path only through H)
A↔B (meaning A←H1→H2→ . . .→B via a path with no colliders only
through H)

17 / 46

Mixed Graphs And Latent Projections

Latent Projections

Will use a generalization of a DAG called Acyclic Directed Mixed
Graphs (ADMGs).

Only has vertices corresponding to observed variables (all H vertices
removed).
Has two types of edges:

A→B (meaning A→H1→H2→ . . .→B via a path only through H)
A↔B (meaning A←H1→H2→ . . .→B via a path with no colliders only
through H)

A B C DD1

A B C DD2

A B C DG

ADMG

17 / 46

Mixed Graphs And Latent Projections

More on Latent Projections

Above way of construct edges is called the latent projection.

Allow one → and ↔ between a node pair.

Meaning: both direct causation and unobserved confounding exists.

A L1

H

A L1

Construct SWIGs from ADMGs the same way:

How do we generalize d-separation from DAGs with → to ADMGs
with both → and ↔?

18 / 46

Mixed Graphs And Latent Projections

More on Latent Projections

Above way of construct edges is called the latent projection.

Allow one → and ↔ between a node pair.

Meaning: both direct causation and unobserved confounding exists.

A L1

H

A L1

Construct SWIGs from ADMGs the same way:

A L1 A a0 L1(a0)

How do we generalize d-separation from DAGs with → to ADMGs
with both → and ↔?

18 / 46

Mixed Graphs And Latent Projections

More on Latent Projections

Above way of construct edges is called the latent projection.

Allow one → and ↔ between a node pair.

Meaning: both direct causation and unobserved confounding exists.

A L1

H

A L1

Construct SWIGs from ADMGs the same way:

A L1 A a0 L1(a0)

How do we generalize d-separation from DAGs with → to ADMGs
with both → and ↔?

18 / 46

Mixed Graphs And Latent Projections

m-separation (“m” for “mixed.”)

Treat colliders and non-colliders the same as with d-separation.

As before, can condition on descendants of colliders instead.

A B CA 6⊥⊥ C :

A B CA ⊥⊥ C :

A B CA 6⊥⊥ C :

A B CA ⊥⊥ C :

A B CA ⊥⊥ C :

A B CA 6⊥⊥ C :

A B CA ⊥⊥ C | B :

A B CA 6⊥⊥ C | B :

A B CA ⊥⊥ C | B :

A B CA 6⊥⊥ C | B :

A B CA 6⊥⊥ C | B :

A B CA ⊥⊥ C | B :

19 / 46

Mixed Graphs And Latent Projections

Identification In Hidden Variable DAG Models

We have all the ingredients now:

A lifted representation of hidden variable DAG models (latent
projection ADMGs).

A way of constructing SWIGs to think about counterfactual
independence.

Rules of inference: consistency, probability manipulations,
adding/dropping things due to independence.

Enough to deal with any specific graph we get.

20 / 46

Mixed Graphs And Latent Projections

Identification In Hidden Variable DAG Models

We have all the ingredients now:

A lifted representation of hidden variable DAG models (latent
projection ADMGs).

A way of constructing SWIGs to think about counterfactual
independence.

Rules of inference: consistency, probability manipulations,
adding/dropping things due to independence.

Enough to deal with any specific graph we get.

Questions:

When is identification possible and when is it not?

Can we construct a systematic algorithm to check this, and give us a
formula when it is possible?

20 / 46

Mixed Graphs And Latent Projections

The Causal Effect Identification Problem

Implicitly posed by Rubin in the 1970s.

Explicitly posed by Pearl in the 1990s.

Pearl came up with “do-calculus” in 1994: 3 rules to manipulate:
p(Y | do(a),Z) ≡ p(Y (a) | Z (a)) using graphs.

Tian (Pearl’s student) came up with a closed form algorithm (2
pages), got simplified to the ID algorithm (7 lines).

Will show you the new way – 1 line formula.

Equivalent to ID and do-calculus, but simpler.

Complete: either succeeds or fails. If succeeds, gives formula. If fails,
effect not identified. So no other algorithm can succeed either.

Generalizes: adjustment formula, front-door formula, g-computation,
etc.

21 / 46

Mixed Graphs And Latent Projections

One Line ID: Good News/Bad News

Good news: a lot simpler then even five years ago.

Bad news: still somewhat subtle.

Bad news: will need to introduce quite a bit of new stuff.

Good news: new stuff will help you really understand hidden variable
models. In general, not just in causal settings.

22 / 46

Mixed Graphs And Latent Projections

One Line ID: Good News/Bad News

Good news: a lot simpler then even five years ago.

Bad news: still somewhat subtle.

Bad news: will need to introduce quite a bit of new stuff.

Good news: new stuff will help you really understand hidden variable
models. In general, not just in causal settings.

Kernels: moving beyond conditional distributions.
Districts: how do hidden variable models factorize.
Fixing: generalizing g-formula to the hidden variable case.
Fixable: when can we apply fixing.
Putting it all together.

22 / 46

Kernels

Kernels: Generalized Conditional Distributions

Recall two treatment case:

A0 L1 A1 L2

H1 H2

A0 L1 A1 L2

p(L2(a0, a1)) =
∑
l1

p(L2 | a1, l1, a0)p(l1 | a0)

Think of this as a “conditional” distribution (map from values a0, a1

to a normalized distribution):

This was not obtained from p(L2,A1,A0) by conditioning on A1,A0.
If we did that we would get:

23 / 46

Kernels

Kernels: Generalized Conditional Distributions

Recall two treatment case:

A0 L1 A1 L2

H1 H2

A0 L1 A1 L2

p(L2(a0, a1)) =
∑
l1

p(L2 | a1, l1, a0)p(l1 | a0)

Think of this as a “conditional” distribution (map from values a0, a1

to a normalized distribution):

q(L2 | a0, a1) ≡
∑
l1

p(L2 | a1, l1, a0)p(l1 | a0).

This was not obtained from p(L2,A1,A0) by conditioning on A1,A0.
If we did that we would get:

23 / 46

Kernels

Kernels: Generalized Conditional Distributions

Recall two treatment case:

A0 L1 A1 L2

H1 H2

A0 L1 A1 L2

p(L2(a0, a1)) =
∑
l1

p(L2 | a1, l1, a0)p(l1 | a0)

Think of this as a “conditional” distribution (map from values a0, a1

to a normalized distribution):

q(L2 | a0, a1) ≡
∑
l1

p(L2 | a1, l1, a0)p(l1 | a0).

This was not obtained from p(L2,A1,A0) by conditioning on A1,A0.
If we did that we would get:

p(L2 | a0, a1) =
∑
l1

p(L2 | a1, l1, a0)p(l1 | a0, a1)

23 / 46

Kernels

Kernels: Generalized Conditional Distributions

Kernels q(~V | ~w) act just like a conditional probability p(~V | ~w).

Every value ~w maps to a distribution (density) over ~V :
Normalized to sum to 1.
Every kernel probability q(~V = ~v | ~w) ≥ 0.

In general not obtained from p(~W , ~V) by conditioning on ~W .

Kernels are important in hidden variable models, as we will see.

Conditional independences in kernels are very interesting things! Will
come back to this later.

Define marginalization, conditioning normally. For any ~A ⊆ ~V ,

q(~A | ~W) ≡
∑
~V\~A

q(~V | ~W)

q(~V \ ~A | ~A, ~W) ≡ q(~V | ~W)

q(~A | ~W)
.

24 / 46

Kernels

How To Factorize Hidden Variable DAGs?

A DAG gives us Markov factorization:

p(~V) =
∏
V∈ ~V

p(V | paG(V)).

Want to factorize a hidden variable DAG, but cannot use H:

A0 L1 A1 L2

H1 H2

A0 L1 A1 L2

Don’t get to use e.g. p(L2 | A1,H2).

What do we do?

25 / 46

Kernels

Can Use Kernels To Factorize

Factorize observed marginal as:

p(A0, L1,A1, L2) = q(A0,A1 | L1)q(L2, L1 | A0,A1)

= (p(A1 | L1,A0)p(A0)) · (p(L2 | A1, L1,A0)p(L1 | A0)) .

A0 L1 A1 L2

H1 H2

A0 L1 A1 L2

Just chain rule and term rearranging.

So does this buy us anything?

26 / 46

Kernels

Can Use Kernels To Factorize

Factorize observed marginal as:

p(A0, L1,A1, L2) = q(A0,A1 | L1)q(L2, L1 | A0,A1)

= (p(A1 | L1,A0)p(A0)) · (p(L2 | A1, L1,A0)p(L1 | A0)) .

A0 L1 A1 L2

H1 H2

A0 L1 A1 L2

Just chain rule and term rearranging.

So does this buy us anything?

26 / 46

Kernels

Kernel Factorizations Vs DAG Factorizations

DAG factorization is chain rule + dropping terms due to ⊥⊥.

Impose order ≺ on variables in ~V , and get this:

p(~V) =
∏
V∈ ~V

p(V | {W |W is earlier than V according to ≺})

=
∏
V∈ ~V

p(V | paG(V)).

Because V is independent of non-parental non-descendants given
parents.

Can play the same game with kernel factorization.

27 / 46

Kernels

Kernel Factorizations Vs DAG Factorizations

If we drop A0→L2 from above, get:

p(A0, L1,A1, L2) = q(A0,A1 | L1)q(L2, L1 | A0,A1),

where L2 is independent of A0 in q(L2, L1 | A0,A1).

A0 L1 A1 L2

H1 H2

A0 L1 A1 L2

Equivalent to:

This is a generalized independence constraint or Verma constraint.

Thomas Verma was Pearl’s student, appears in a lot of early
d-separation, etc. papers.

28 / 46

Kernels

Kernel Factorizations Vs DAG Factorizations

If we drop A0→L2 from above, get:

p(A0, L1,A1, L2) = q(A0,A1 | L1)q(L2, L1 | A0,A1),

where L2 is independent of A0 in q(L2, L1 | A0,A1).

A0 L1 A1 L2

H1 H2

A0 L1 A1 L2

Equivalent to:∑
L1

p(L2 | L1,A1,A0)p(L1 | A0) is not a function of A0.

This is a generalized independence constraint or Verma constraint.

Thomas Verma was Pearl’s student, appears in a lot of early
d-separation, etc. papers.

28 / 46

Kernels

Kernel Factorizations Vs DAG Factorizations

If we drop A0→L2 from above, get:

p(A0, L1,A1, L2) = q(A0,A1 | L1)q(L2, L1 | A0,A1),

where L2 is independent of A0 in q(L2, L1 | A0,A1).

A0 L1 A1 L2

H1 H2

A0 L1 A1 L2

Equivalent to:∑
L1

p(L2 | L1,A1,A0)p(L1 | A0) is not a function of A0.

This is a generalized independence constraint or Verma constraint.

Thomas Verma was Pearl’s student, appears in a lot of early
d-separation, etc. papers.

28 / 46

Kernels

Kernel Factorizations In General

DAG factorization has terms for single variables given parents.

We saw an example with terms for sets of variables.

What do sets correspond to in general?

Districts. A district is a spanning tree of ↔ edges. Example:

Two districts here: {A0,A1}, {L1, L2}.
Can view factorization as a product over kernels, one kernel per
district:

D(G) means “set of districts in G.” In a DAG, district = single vertex.

29 / 46

Kernels

Kernel Factorizations In General

DAG factorization has terms for single variables given parents.

We saw an example with terms for sets of variables.

What do sets correspond to in general?

Districts. A district is a spanning tree of ↔ edges. Example:

A0 L1 A1 L2

Two districts here: {A0,A1}, {L1, L2}.

Can view factorization as a product over kernels, one kernel per
district:

D(G) means “set of districts in G.” In a DAG, district = single vertex.

29 / 46

Kernels

Kernel Factorizations In General

DAG factorization has terms for single variables given parents.

We saw an example with terms for sets of variables.

What do sets correspond to in general?

Districts. A district is a spanning tree of ↔ edges. Example:

A0 L1 A1 L2

Two districts here: {A0,A1}, {L1, L2}.
Can view factorization as a product over kernels, one kernel per
district:

p(A0, L1,A1, L2) = q(A0,A1 | L1)q(L2, L1 | A0,A1),

=
∏

~D∈D(G)

q(~D | paG(~D) \ ~D),

D(G) means “set of districts in G.” In a DAG, district = single vertex.

29 / 46

Fixing: Generalizing The G-Formula

Generalizing The G-formula

In a DAG, g-formula was dropping terms p(A | paG(A)).

In a hidden variable DAG, cannot observe all paG(A)).

Have to generalize “dropping terms.”

Will define fixing operation on graphs and kernels.

Start with p(~V), this is (vacuously) a kernel, too.

30 / 46

Fixing: Generalizing The G-Formula

Fixing Operation On Graphs

Fixing a vertex A in a graph: make A a square, remove all incoming
arrows to A (both → and ↔).

Like doing a SWIG, but also remove A. Example, fixing A1:

A0 L1 A1 L2G A0 L1 a1 L2φA1(G)

Will denote operation of fixing A by φA(G).

31 / 46

Fixing: Generalizing The G-Formula

Fixing Operation On Kernels

Fixing a variable A in a kernel q(~V | ~W): divide by q(A | ndG(A), ~W)
(ndG(A) is “non-descendants of A.”)

Example:

A0 L1 A1 L2G

φA1(p(A0, L1,A1, L2);G) ≡ p(A0, L1,A1, L2)

p(A1 | A0, L1)

= p(L2 | A1, L1,A0)p(L1 | A0)p(A0)

≡ q(L2, L1,A0 | A1).

Use same notation φA(.), but now mention graph G also, not just
starting kernel.

Without graph don’t know what non-descendants are!

Important note: unlike p(.|.), q(.|.) notation is ambiguous, have to
tell you how I got the q(.|.), usually via a sequence of φ(.).

32 / 46

Fixing: Generalizing The G-Formula

Fixing Operation On Kernels

Fixing a variable A in a kernel q(~V | ~W): divide by q(A | ndG(A), ~W)
(ndG(A) is “non-descendants of A.”)

Example:

A0 L1 A1 L2G

φA1(p(A0, L1,A1, L2);G) ≡ p(A0, L1,A1, L2)

p(A1 | A0, L1)

= p(L2 | A1, L1,A0)p(L1 | A0)p(A0)

≡ q(L2, L1,A0 | A1).

Use same notation φA(.), but now mention graph G also, not just
starting kernel.

Without graph don’t know what non-descendants are!

Important note: unlike p(.|.), q(.|.) notation is ambiguous, have to
tell you how I got the q(.|.), usually via a sequence of φ(.).

32 / 46

Fixing: Generalizing The G-Formula

Fixing As G-formula

Fixing in a kernel is sort of like g-formula when there are hidden
variables.

In a DAG can always use g-formula.

In an ADMG can not always fix – depends on the graph.

Will try to apply fixing on graph/kernel together multiply times.

Use graph to check if we can fix.

33 / 46

Fixing: Generalizing The G-Formula

Fixable Vertices

A is fixable if there does not exist a single B with these paths:

A→V1→V2→ . . .→B

A↔Z1↔Z2↔ . . .↔B

Example, can fix A1, cannot fix A0:

A0 L1 A1 L2G

Once we fix A1, can now fix A0 also:

Fixing a set in a graph: φ~A
(G), find an order {A1, . . .Ak} in ~A such

that can fix in that order in G.

If possible, can also fix ~A in a kernel: φ~A
(q;G) in the same order.

If not possible to fix in any order, operation is undefined.

If possible in some order, then order does not matter (not obvious!)

34 / 46

Fixing: Generalizing The G-Formula

Fixable Vertices

A is fixable if there does not exist a single B with these paths:

A→V1→V2→ . . .→B

A↔Z1↔Z2↔ . . .↔B

Example, can fix A1, cannot fix A0:

A0 L1 A1 L2G

Once we fix A1, can now fix A0 also:

A0 L1 a1 L2G

Fixing a set in a graph: φ~A
(G), find an order {A1, . . .Ak} in ~A such

that can fix in that order in G.

If possible, can also fix ~A in a kernel: φ~A
(q;G) in the same order.

If not possible to fix in any order, operation is undefined.

If possible in some order, then order does not matter (not obvious!)

34 / 46

Fixing: Generalizing The G-Formula

Fixable Vertices

A is fixable if there does not exist a single B with these paths:

A→V1→V2→ . . .→B

A↔Z1↔Z2↔ . . .↔B

Example, can fix A1, cannot fix A0:

A0 L1 A1 L2G

Once we fix A1, can now fix A0 also:

A0 L1 a1 L2G

Fixing a set in a graph: φ~A
(G), find an order {A1, . . .Ak} in ~A such

that can fix in that order in G.

If possible, can also fix ~A in a kernel: φ~A
(q;G) in the same order.

If not possible to fix in any order, operation is undefined.

If possible in some order, then order does not matter (not obvious!)

34 / 46

Fixing: Generalizing The G-Formula

Fixable Vertices

A is fixable if there does not exist a single B with these paths:

A→V1→V2→ . . .→B

A↔Z1↔Z2↔ . . .↔B

Example, can fix A1, cannot fix A0:

A0 L1 A1 L2G

Once we fix A1, can now fix A0 also:

A0 L1 a1 L2G

Fixing a set in a graph: φ~A
(G), find an order {A1, . . .Ak} in ~A such

that can fix in that order in G.

If possible, can also fix ~A in a kernel: φ~A
(q;G) in the same order.

If not possible to fix in any order, operation is undefined.

If possible in some order, then order does not matter (not obvious!)

34 / 46

The ID Algorithm (New Version)

One Line ID Algorithm

Input: ADMG G with vertex set ~V , any outcome set ~Y , any
treatment set ~A.

Question: is p(~Y (~a)) identified from p(~V) in any hidden variable
DAG causal model represented by G?

Specific value ~a does not matter.
1 Construct SWIG G(~a) for fixing ~a.

2 Define ~Y ∗ that are ancestors of ~Y in G(~a) and are not square nodes.

3 Construct a graph G~Y ∗ containing only ~Y ∗ (and edges between those
nodes).

4 If fixing all sets below is defined, return∑
~Y ∗\~Y

∏
~D∈D(G~Y∗)

φ~V\~D(p(~V);G).

4 Otherwise return not identified.

Very abstract, let’s do some examples!

35 / 46

The ID Algorithm (New Version)

One Line ID Algorithm

Input: ADMG G with vertex set ~V , any outcome set ~Y , any
treatment set ~A.

Question: is p(~Y (~a)) identified from p(~V) in any hidden variable
DAG causal model represented by G?

Specific value ~a does not matter.
1 Construct SWIG G(~a) for fixing ~a.

2 Define ~Y ∗ that are ancestors of ~Y in G(~a) and are not square nodes.

3 Construct a graph G~Y ∗ containing only ~Y ∗ (and edges between those
nodes).

4 If fixing all sets below is defined, return∑
~Y ∗\~Y

∏
~D∈D(G~Y∗)

φ~V\~D(p(~V);G).

4 Otherwise return not identified.

Very abstract, let’s do some examples!

35 / 46

The ID Algorithm (New Version)

Example 1

Target: p(~Y (~a)) = p(L2(a)).

L1 A L2

1 Construct SWIG G(a):

2 ~Y ∗ = {L2}.
3 Construct G~Y ∗ :

4 Only one district {L2}. Is fixing φ{L1,A}(G) defined?

36 / 46

The ID Algorithm (New Version)

Example 1

Target: p(~Y (~a)) = p(L2(a)).

L1 A L2

1 Construct SWIG G(a):

L1 A a L2

2 ~Y ∗ = {L2}.
3 Construct G~Y ∗ :

4 Only one district {L2}. Is fixing φ{L1,A}(G) defined?

36 / 46

The ID Algorithm (New Version)

Example 1

Target: p(~Y (~a)) = p(L2(a)).

L1 A L2

1 Construct SWIG G(a):

L1 A a L2

2 ~Y ∗ = {L2}.

3 Construct G~Y ∗ :

4 Only one district {L2}. Is fixing φ{L1,A}(G) defined?

36 / 46

The ID Algorithm (New Version)

Example 1

Target: p(~Y (~a)) = p(L2(a)).

L1 A L2

1 Construct SWIG G(a):

L1 A a L2

2 ~Y ∗ = {L2}.
3 Construct G~Y ∗ :

L2

4 Only one district {L2}. Is fixing φ{L1,A}(G) defined?

36 / 46

The ID Algorithm (New Version)

Example 1

Target: p(~Y (~a)) = p(L2(a)).

L1 A L2

1 Construct SWIG G(a):

L1 A a L2

2 ~Y ∗ = {L2}.
3 Construct G~Y ∗ :

L2

4 Only one district {L2}. Is fixing φ{L1,A}(G) defined?

36 / 46

The ID Algorithm (New Version)

Example 1 (Continued)

4 Yes, can fix A, then L1:

L1 A L2

G

L1 A L2

φA(G)

L1 A L2

φ{L1,A}(G)

4 Thus, return

37 / 46

The ID Algorithm (New Version)

Example 1 (Continued)

4 Yes, can fix A, then L1:

L1 A L2

G

L1 A L2

φA(G)

L1 A L2

φ{L1,A}(G)

4 Thus, return

p(L2(a)) =
∑
~Y ∗\~Y

∏
~D∈D(G~Y∗)

φ~V\~D(p(~V);G)

= φ{L1,A}(p(L1,A, L2);G)

= φ{L1}

(
p(L1,A, L2)

p(A | L1)
;φA(G)

)
≡ φ{L1}(q(L1, L2 | A);φA(G))

=
q(L1, L2 | A)

q(L1 | A, L2)

=
p(L2 | A, L1)p(L1)

p(L2|A,L1)p(L1)∑
L1

p(L2|A,L1)p(L1)

=
∑
L1

p(L2 | A, L1)p(L1)

37 / 46

The ID Algorithm (New Version)

Example 2

Target: p(~Y (~a)) = p(L2(a)).

A L1 L2

1 Construct SWIG G(a):

2 ~Y ∗ = {L2, L1}.
3 Construct G~Y ∗ :

4 Two districts: {L1}, {L2}. Is fixing φ{L1,A}(G) and φ{L2,A} defined?

38 / 46

The ID Algorithm (New Version)

Example 2

Target: p(~Y (~a)) = p(L2(a)).

A L1 L2

1 Construct SWIG G(a):

A a L1 L2

2 ~Y ∗ = {L2, L1}.
3 Construct G~Y ∗ :

4 Two districts: {L1}, {L2}. Is fixing φ{L1,A}(G) and φ{L2,A} defined?

38 / 46

The ID Algorithm (New Version)

Example 2

Target: p(~Y (~a)) = p(L2(a)).

A L1 L2

1 Construct SWIG G(a):

A a L1 L2

2 ~Y ∗ = {L2, L1}.

3 Construct G~Y ∗ :

4 Two districts: {L1}, {L2}. Is fixing φ{L1,A}(G) and φ{L2,A} defined?

38 / 46

The ID Algorithm (New Version)

Example 2

Target: p(~Y (~a)) = p(L2(a)).

A L1 L2

1 Construct SWIG G(a):

A a L1 L2

2 ~Y ∗ = {L2, L1}.
3 Construct G~Y ∗ :

L1 L2

4 Two districts: {L1}, {L2}. Is fixing φ{L1,A}(G) and φ{L2,A} defined?

38 / 46

The ID Algorithm (New Version)

Example 2

Target: p(~Y (~a)) = p(L2(a)).

A L1 L2

1 Construct SWIG G(a):

A a L1 L2

2 ~Y ∗ = {L2, L1}.
3 Construct G~Y ∗ :

L1 L2

4 Two districts: {L1}, {L2}. Is fixing φ{L1,A}(G) and φ{L2,A} defined?

38 / 46

The ID Algorithm (New Version)

Example 2 (Continued)

4 φ{L1,A}(G) defined, can fix L1, then A:

A L1 L2

G

A L1 L2

φL1 (G)

A L1 L2

φ{L1,A}(G)

4 φ{L2,A}(G) defined, can fix L2, then A:

39 / 46

The ID Algorithm (New Version)

Example 2 (Continued)

4 φ{L1,A}(G) defined, can fix L1, then A:

A L1 L2

G

A L1 L2

φL1 (G)

A L1 L2

φ{L1,A}(G)

4 φ{L2,A}(G) defined, can fix L2, then A:

A L1 L2

G

A L1 L2

φL2 (G)

A L1 L2

φ{L2,A}(G)

39 / 46

The ID Algorithm (New Version)

Example 2 (Continued)

4 Thus, return

p(L2(a)) =
∑
~Y ∗\~Y

∏
~D∈D(G~Y∗)

φ~V\~D(p(~V);G)

=
∑
L1

φ{L1,A}(p(L1,A, L2);G) · φ{L2,A}(p(L1,A, L2);G)

=
∑
L1

φ{A}

(
p(L1,A, L2)

p(L1 | A)
;φL1 (G)

)
· φ{A}

(
p(L1,A, L2)

p(L2 | A, L1)
;φL2 (G)

)
≡
∑
L1

φ{A}(q(A, L2 | L1);φL1 (G)) · φ{A}(p(L1,A);φL2 (G))

=
∑
L1

φ{A}(q(A, L2 | L1);φL1 (G)) · p(L1 | A)

=
∑
L1

(∑
A′

p(L2 | L1,A
′)p(A′)

)
· p(L1 | A)

40 / 46

The ID Algorithm (New Version)

Example 3

Target: p(~Y (~a)) = p(L(a)).

A L

1 Construct SWIG G(a):

2 ~Y ∗ = {L}.
3 Construct G~Y ∗ :

4 One district: {L}. Is fixing φ{A}(G) defined? No. So we fail.

41 / 46

The ID Algorithm (New Version)

Example 3

Target: p(~Y (~a)) = p(L(a)).

A L

1 Construct SWIG G(a):

A a L

2 ~Y ∗ = {L}.
3 Construct G~Y ∗ :

4 One district: {L}. Is fixing φ{A}(G) defined? No. So we fail.

41 / 46

The ID Algorithm (New Version)

Example 3

Target: p(~Y (~a)) = p(L(a)).

A L

1 Construct SWIG G(a):

A a L

2 ~Y ∗ = {L}.

3 Construct G~Y ∗ :

4 One district: {L}. Is fixing φ{A}(G) defined? No. So we fail.

41 / 46

The ID Algorithm (New Version)

Example 3

Target: p(~Y (~a)) = p(L(a)).

A L

1 Construct SWIG G(a):

A a L

2 ~Y ∗ = {L}.
3 Construct G~Y ∗ :

L

4 One district: {L}. Is fixing φ{A}(G) defined? No. So we fail.

41 / 46

The ID Algorithm (New Version)

Example 3

Target: p(~Y (~a)) = p(L(a)).

A L

1 Construct SWIG G(a):

A a L

2 ~Y ∗ = {L}.
3 Construct G~Y ∗ :

L

4 One district: {L}. Is fixing φ{A}(G) defined? No. So we fail.

41 / 46

Effect Modification

Conditional Causal Effects (Effect Modification)

May be interested instead in p(~Y (~a) | ~Z (~a)) instead of p(~Y (~a)).

Example “average treatment effect on African-American men over the
age of 55:

E [Y (~a) | ~z]− E [Y (~a′) | ~z].

Called effect modification in Epidemiology.

Is this harder or easier than identifying p(~Y (~a))?

Turns out this is pretty easy if we know how to identify p(~Y (~a)).

42 / 46

Effect Modification

Identifying Conditional Causal Effects

1 Construct a SWIG G(~a).

2 Let ~W ⊆ ~Z be the set of all W such that all paths from W to ~Y in
G(~a) that start with →W or ↔W are m-separated by ~Z \ {W }.

3 Try to identify p(~Y ∪ (~Z \ ~W) | do(~a ∪ ~w)).

4 If this works and result is q(~Y , ~Z \ ~W | ~a, ~w), for any value subset ~w
of ~z , return

q(~Y | ~Z \ ~W , ~a, ~w)|~Z\ ~W=~z\~w =
q(~Y , ~Z \ ~W | ~a, ~w)∑
~Y
q(~Y , ~Z \ ~W | ~a, ~w)

∣∣∣
~Z\ ~W=~z\~w

.

5 Otherwise, return not identified.

This is also complete (if it fails, no other method can identify without
more assumptions).

43 / 46

Effect Modification

Identifying Conditional Causal Effects

1 Construct a SWIG G(~a).

2 Let ~W ⊆ ~Z be the set of all W such that all paths from W to ~Y in
G(~a) that start with →W or ↔W are m-separated by ~Z \ {W }.

3 Try to identify p(~Y ∪ (~Z \ ~W) | do(~a ∪ ~w)).

4 If this works and result is q(~Y , ~Z \ ~W | ~a, ~w), for any value subset ~w
of ~z , return

q(~Y | ~Z \ ~W , ~a, ~w)|~Z\ ~W=~z\~w =
q(~Y , ~Z \ ~W | ~a, ~w)∑
~Y
q(~Y , ~Z \ ~W | ~a, ~w)

∣∣∣
~Z\ ~W=~z\~w

.

5 Otherwise, return not identified.

This is also complete (if it fails, no other method can identify without
more assumptions).

43 / 46

Effect Modification

A Note On Estimation

For g-computation with hidden variables can use parametric g-formula
or marginal structural models (IPW), as before.

In more complex cases can sometimes use MLE plug-in estimation, or
weighting methods.

Getting “good” estimators is an open problem in general, because you
have to estimate weird, variation dependent functions.

In the special case of discrete statespaces, there is a very clean way
out – some out of class reading on this: (Richardson et al, 2017).

44 / 46

Effect Modification

Example: Front-Door Formula Estimation

Recall:

p(L2(a)) =
∑
l1

(∑
a′

p(L2 | l1, a′)p(a′)

)
p(L1 = l1 | a)

Plug-in MLE:
1 Fit E [L2 | L1,A;α] and p(L1 | A;β) to yield α̂, β̂.
2 Estimate E [L2(a)] as

1

n

n∑
i=1

1

n

n∑
j=1

E [L2 | Li1,Aj ; α̂]

 · p(Li1 | A = 1; β̂).

Weighting:
1 Fit p(L1 | A;β) to yield β̂.
2 Estimate E [L2(a)] as

1

n

n∑
i=1

Li2
p(Li1 | A = 1; β̂)

p(Li1 | Ai ; β̂)

45 / 46

Effect Modification

Next time: Causal Decision Theory.

46 / 46

	Review
	Hidden Variable Example
	G-Computation With Hidden Variables
	Mixed Graphs And Latent Projections
	Kernels
	Fixing: Generalizing The G-Formula
	The ID Algorithm (New Version)
	Effect Modification

