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Counterfactuals

Getting Causality From A Statistical Model

Can learn model parameters from data.

Would be great if we could interpret them causally.

Example: large coefficient in linear regression – large causal effect
(guns cause murders, alcohol causes accidents, etc.)

But everyone knows: association does not imply causation:

People in hospitals tend to be sick.
People who own olympic gold medals in running tend to be fast
runners!
“Cargo cult” behavior.

When does association imply causation? Will talk about this today.
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Counterfactuals

Hume’s Definition

Recall (“first” = cause, “second” = effect):

all the objects, similar to the first, are followed by objects similar to
the second, . . . where, if the first object had not been the second

never had existed.

This is a counterfactual definition.

Let’s try to think about this formally.
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Counterfactuals

Counterfactuals

Will need outcome Y (like in regression) and treatment or exposure A.

Will define a potential outcome:

Y (a) ≡ “Y if A, possibly contrary to fact, had value a”.

What this is not (in general): Y conditional on A = a (Y | a).

What this is:

A is input to a procedure in Java, Y is the output. Y (a): output of
procedure if we stopped execution in debugger, and set input to a.
p(Y | a): probability of rain if my lawn is wet.
p(Y (a)): probability of rain if I sprayed my lawn with a hose.
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Counterfactuals

Encoding Hume’s Definition

A = 1: fire, Y = 1: smoke, A = 0: no fire, Y = 0: no smoke.

Smoke follows fire: Y (A = 1) = 1.

If there had been no fire, there would have been no smoke:
Y (A = 0) = 0.

Can establish causality by comparing Y (a) for different a:

Y (A = 1)− Y (A = 0).

This is called a causal effect or causal contrast.

Shorthand: Y (1) ≡ Y (A = 1), if A is understood.
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Classical Causal Inference Assumptions

Linking The Counterfactual And The Factual

We are not (just) doing philosophy, we want to do data analysis!

Data records what actually happened.

What we want is something that did not happen.

We need to link counterfactuals and observed data.

Standard assumption is called consistency: Y (A) = Y . Read:

“Observed Y and Y if we were to set A to whatever value it was
observed are the same variable.”

If A was observed to be a, we can get Y (a) as Y . But what if A were
something else?
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Classical Causal Inference Assumptions

Fundamental Problem of Causal Inference

For every row, only see one outcome (Y obs)!

Y (1) Y (0) Y (1)− Y (0) A Y obs

1.1 2.3 -1.2 1 1.1
1.8 0.3 1.5 0 0.3
2.0 2.1 -0.1 0 2.1
0.1 1.3 -1.2 1 0.1

mean 1.25 1.5 -0.25
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Randomization Based Inference

Ignorability

A determines what treatment people get.

Intuition: want A not to depend on potential outcome.

Example: flip a coin, if heads A = 1, if tails, A = 0.

Results in “fair” assignment, any difference in Y (A) has to do with
the person, not the assignment mechanism.

False if e.g. sick people get A = 1, healthy people get A = 0.

Compare to Lind’s diary.

Formally: {Y (1),Y (0)} ⊥⊥ A.

Known as ignorability.
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Randomization Based Inference

Consequences Of Ignorability

Remember, want to compare, Y (1) and Y (0). Have data on
Y obs = Y and A.

Assume we had infinite amount of data, in fact we knew the
underlying distribution p(Y ,A).

Assume {Y (1),Y (0)} ⊥⊥ A, and consistency. Then

p(Y (1)) = p(Y (1)|A = 1) = p(Y |A = 1)

p(Y (0)) = p(Y (0)|A = 0) = p(Y |A = 0)

Ignorability (random treatment assignment) means association is
causation(!)

Basis of the causal validity of randomized controlled trials.
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Randomization Based Inference

Example

Assume ignorablity, and our table:

Y (1) Y (0) Y (1)− Y (0) A Y obs

1.1 2.3 -1.2 1 1.1
1.8 0.3 1.5 0 0.3
2.0 2.1 -0.1 0 2.1
0.1 1.3 -1.2 1 0.1

mean 1.25 1.5 -0.25

Then E [Y (1)] = E [Y | A = 1], E [Y (0)] = E [Y | A = 0].

MLE: E [Y | A = 1] ≈ 0.6, E [Y | A = 0] ≈ 1.2, so

Difference is called the average causal effect (ACE).

May also want individual causal effect, e.g. 1.1− 2.3 = −1.2 for unit
1.
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Randomization Based Inference

Neyman’s Causal Effect

For every unit i , Yi (1) and Yi (0) are (potentially unknown) fixed
quantities.

Randomness comes only from A (treatment assignment).

Assume n total units, k assigned to A = 1.

ACE estimate:

ÂCE =

(
1

k

n∑
i=1

Yi · Ai

)
−

(
1

n − k

n∑
i=1

Yi · (1− Ai )

)

Can estimate variance of ACE also (for confidence intervals):

V̂ar(ÂCE) =
Var(Yi | A = 1)

k
+

Var(Yi | A = 0)

n − k
.

Can estimate reliability of estimator using this.
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Randomization Based Inference

Confidence Intervals and Central Limit Theorem

We measure estimator reliability using confidence intervals.

Generate many estimates θ̂(~Xi ) where ~Xi is a bootstrap sample.

Look at quantiles.

What is the distribution of θ̂(~Xi ) (i = 1, . . . , k)?

For some θ̂(~Xi ) looks more and more like a Gaussian as k →∞.

Due to Central Limit Theorem: mean of independent random
variables is approximately Gaussian.

2.5% and 97.5% quantiles for N (µ, σ2) is at

µ− 1.96 · σ, µ+ 1.96 · σ.
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Randomization Based Inference

Confidence Intervals For Neyman’s ACE

Recall:

ÂCE =

(
1

k

n∑
i=1

Yi · Ai

)
−

(
1

n − k

n∑
i=1

Yi · (1− Ai )

)

V̂ar(ÂCE) =
Var(Yi | A = 1)

k
+

Var(Yi | A = 0)

n − k
.

2.5%, 97.5% CI is:

ÂCE± 1.96 ·
√

Var(Yi | A = 1)

k
+

Var(Yi | A = 0)

n − k
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Randomization Based Inference

Model Based Inference

What if we have lots of binary treatments A1, . . .Ak?

All treatments randomized (need lots of units...)

Can use any regression model (say linear):

E [Y | a1, . . . ak ] = w0 +
k∑

i=1

wi · ak .

Estimate as usual. Then E [Y | a1, . . . , ak ] = E [Y (a1, . . . , ak)], and

E [Y (A1 = 1, a2, . . . ak)]− E [Y (A1 = 0, a2, . . . , ak)] = w1.

Regression coefficients directly encode mean contrast for any
treatment!

Only holds if Ai were perfectly randomized:
Y (a1, . . . , ak) ⊥⊥ {A1, . . . ,Ak}.
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Randomization Based Inference

Checking For No Effect

Question of substantive interest: is there an effect at all?

Frequentist approach:

Assume no effect.
Calculate a statistic, see how surprising it is under assumption.
If very surprising, reject assumption.

This is propositional logic (contrapositive) applied to probability.

Problems with this.

Example: false positives for rare events.
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Randomization Based Inference

Cancer Screening Example

Presence of rare cancer: p(C = 1) = 0.00001.

Test false positive (“boy cries wolf”): p(T = 1|C = 0) = 0.01.

Test false negative (“a wolf is ignored”): p(T = 0|C = 1) = 0.001.

Oh no! Test came back positive (T = 1)! Should we worry?

Bayes theorem gives answer directly:

Frequentist way is assume C = 0, see how surprised we are!

p(T = 1 | C = 0) = 0.01 is surprising. So we start therapy...

Lesson: can’t use logic if hypothesis probabilities are very uneven.
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Randomization Based Inference

P-value: Measure Of Surprise

Pick a statistic θ̂(~X ).

Derive a distribution p∅(θ̂(~X )) of θ̂(~X ) (in closed form, by resampling,
etc.) assuming no effect.

p-value : probability p∅(θ̂(~X ) ≥ θ̂(~̃X )), where ~̃X is actual dataset.

Throwing two dice example.

On the board
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Randomization Based Inference

Fisher’s Test (Background)

Will use frequentist approach for checking hypothesis “ACE is 0.”

This means: Yi (1) = Yi (0) for all i .

What is the statistic?
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Randomization Based Inference

Deriving The Statistic

Simple example: binary treatment A, binary outcome Y :

Y = 1 Y = 0

A = 1
∑

i AiY
obs
i

∑
i Ai (1− Y obs

i )
∑

i Ai

A = 0
∑

i (1− Ai )Y
obs
i

∑
i (1− Ai )(1− Y obs

i )
∑

i (1− Ai )∑
i Y

obs
i

∑
i (1− Y obs

i ) N

Fictitious example, based on data in (Vesikari, 1990): randomized N
= 200 infants aged 2-5 months to rotavirus vaccine or placebo:

Y = 1 Y = 0

A = 1 35 65 100
A = 0 45 55 100

80 120 200
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Randomization Based Inference

Deriving The Statistic

Total number of subjects: N.

Number of cases (got the drug): n.

Number of positive responses: K .

Number of positive responses among cases: k .

Remember, assumed no effect, so can redo table as:

Y = 1 Y = 0

A = 1
∑

i AiYi (0)
∑

i Ai (1− Yi (0)) n
A = 0

∑
i (1− Ai )Yi (0)

∑
i (1− Ai )(1− Yi (0)) N − n

K =
∑

i Yi (0)
∑

i (1− Yi (0)) N

Note: everything except case/control assignment is fixed.

Fisher derived the distribution of k successes out of n draws (w/o
replacement) out of a finite pop. of size N with K successes.

Called the hypergeometric distribution.
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Randomization Based Inference

Fisher’s Test

Hypergeometric distribution:

p(k) =

(K
k

)(N−K
n−k

)(N
n

)
k n − k n

K − k N − n − K + k N − n

K N − K N

To calculate p-value, count valid table arrangements where top left
cell counts are ≤ k .

Called Fisher’s exact test.

In our example, p(
∑

i AiYi (0) ≤ 35) = 0.1938.
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Introduction To Missing Data

General View Of Missing Data

p(~X )
sampling process

x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44
. . . . . . . . . . . .

missingness process

? ? x13 x14
x21 x22 x23 x24
x31 x32 x33 ?
x41 x42 x43 x44
. . . . . . . . . . . .
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Introduction To Missing Data

Missing Data Vs Causal Inference

In causal inference, inferences about a counterfactual from the
observed data law.

In missing data, inferences about the full data law from the observed
data law.

Lots of similarities.

In both cases the link provided by an untestable model.
In both cases we are compensating for bias in the data.

As we will see, similarities are not superficial.
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Introduction To Missing Data

Causal Inference As A Missing Data Problem

Can think of causal inference as inference about missing variables.

Full data distribution: p(Y (1),Y (0),A). A is observed, Y (1),Y (0)
are missing!

Observed data distribution: p(Y ,A), where Y is an always observed
“coarsened version” of Y (1) and Y (0): Y ≡ Y (1)A + Y (0)(1− A)
(by consistency!)

Modeling assumption: {Y (1),Y (0)} ⊥⊥ A.
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Introduction To Missing Data

Missing Data as a Causal (Counterfactual) Problem

Will have three types of variables: missing (first matrix), proxies
(second matrix), and indicators (is variable missing or not?)

Denote missing variable by Xi (1), reads

“the variable Xi if we could, hypothetically, see it.”

Every Xi (1) has an indicator Ri and a factual (proxy) variable Xi .

If Ri = 1, Xi = Xi (1).

If Ri = 0, Xi = ? (or undefined).

Problem is about how Ri and Xi (1) are related.
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Introduction To Missing Data

Rubin’s Missingness Hierarchy

Donald Rubin did much of early work on causal inference and missing
data. Also invented the EM algorithm!

Established modern missingness hierarchy:

Missing Completely At Random (MCAR): presence of ? determined by
an independent coin flip.
Missing At Random (MAR): presence of ? determined by a coin
independent of underlying variable given observed data.
Missing Not At Random (MNAR): neither of the above.

MCAR is very easy.

Most missing data work assumes MAR, but it’s unrealistic.

Will use graphs to represent this hierarchy.
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Introduction To Missing Data

Missing Completely at Random

MCAR: “events that lead to missingness occur independently of
observed and unobserved data.”

Our translation: X1(1) ⊥⊥ R1.

Then: p(X1(1)) = p(X1(1) | R1 = 1) = p(X1 | R1 = 1).

The assumption and derivation should look very familiar.

MCAR is just the ignorable model, with the same derivation!

Proxy is “outcome,” indicator is “treatment.”

Under MCAR can use observed case analysis.

In other words, do your analysis on fully observed rows only. Under
MCAR this analysis is equivalent to one we would have done on full
data.
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Introduction To Missing Data

Summary

Operationalized Hume’s definition using potential outcomes.

Like Lind, define causal effect as a contrast: Y (1)− Y (0).

If treatment A is randomly assigned, effectively association is
causation.

Approaches for assessing causation under randomization:

Neyman’s conditional mean and variance.
Regression based approaches for multiple randomized treatments (lots
more in design of experiments).
Fisher’s exact (permutation) test for no effect.

Introduced missing data problems.

Causal inference is a type of missing data problem, missing data may
be viewed counterfactually.
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Introduction To Missing Data

Next time: Dealing With Confounding
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