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The Bootstrap

Reliability Of An Estimator

Recall the picture: p(~x) generates ~Xn×k .

We want to estimate some parameter θ of p(~x) using a rule (our
estimator) that maps ~Xn×k to θ̂(~Xn×k).

Say this rule does a good job on a particular ~Xn×k .

How do we know this rule works well for other ~Xn×k?

Most ~Xn×k?

All ~Xn×k?

Want to measure reliability of our rule in this sense.



The Bootstrap

How To Measure Reliability?

Say we knew p(~x).

We could sample many many ~X 1
n×k ,

~X 2
n×k , . . . ,

~Xm
n×k .

See if estimator does well with θ̂(~X 1
n×k), θ̂(~X 2

n×k), . . . , θ̂(~Xm
n×k).

If so, estimator is reliable.

But if we know p(~x), we already know θ!

All we have is a single ~Xn×k that (we think..) is drawn from p(~x).

What do we do?
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The Bootstrap

Key Ideas For Measuring Reliability

We don’t know p(~x), but we can view ~Xn×k is an approximation if
viewed as a histogram.

View ~Xn×k as an empirical distribution, each row xi∗ has probability
1/n.

Generate many many ~X 1
n×k ,

~X 2
n×k , . . . ,

~Xm
n×k using this distribution.

See how θ̂(~Xn×k)− θ̂(~X i
n×k) for i = 1, . . . ,m behaves.

Note: we do not know θ or p(~x). We are using θ̂(~Xn×k) as an
approximation of θ, and ~Xn×k as an approximation of p(~x).
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The Bootstrap

The Bootstrap

Given dataset ~Xn×k ,

Generate ~X 1
n×k ,

~X 2
n×k , . . . ,

~Xm
n×k by sampling rows from ~Xn×k with

replacement.

Estimate and store θ̂(~Xn×k)− θ̂(~X i
n×k) for i = 1, . . . ,m.

Look at (for example) 2.5% and 97.5% quantiles of the resulting
histogram, call them Ql ,Qu.

Claim: if we do this procedure lots of times, interval
[θ̂(~Xn×k) + Ql , θ̂(~Xn×k) + Qu] will contain θ̂(~Xn×k) 95% of the time.

This is called a confidence interval.

In practice, report θ̂(~Xn×k) and confidence interval as a measure of
reliability of procedure (not the estimate!).

Bayesians report quantiles of the posterior distribution (more later).
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The Bootstrap

Why Learn The Bootstrap?

Works for many (but by no means all) θ.

For some θ can calculate confidence intervals in closed form using
algebra.

Can’t do that in this class – many θ will be complicated.

Bootstrap does need certain conditions to work, will skip details.

Can evaluate just using observed data – similar to cross-validation in
machine learning.



Linear Regression

Regression Models

Regression models relate a set of features ~X and an outcome Y .

Useful for predicting the mean of Y , classification, etc.

We will consider two fairly simple regression models in this class.

Large literature in statistics and ML on regression models, they could
get very complex.

Lots of other models in ML – support vector machines, decision trees,
neural networks, etc.

Will leave those aside in this class.



Linear Regression

Linear Regression

Data: n (continuous) realizations of ~X ∪ {Y }, written as Dn×(k+1),

which is ~Yn×1 and ~Xn×k .
Model (ε ∼ N (0, σ2), independent of X ):

Y = a0 +
k∑

i=1

xi · ai + ε

Likelihood (for Y conditional on ~X ):

LY |~X (D; {(a1i ), σ
2}) =

n∏
i=1

1√
2σ2π

exp

{
−

(yi − (a0 +
∑k

j=1 aj · xij))2

2σ2

}
Log Likelihood:

LY |~X (D; {(a1i ), σ
2}) =

n∑
i=1

−
(yi − (a0 +

∑k
j=1 aj · xij))2

2σ2
− n log

{√
2σ2π

}
Equivalent to minimizing

∑n
i=1(yi − (a0 +

∑k
j=1 aj · xij))2 (sometimes

named “least squares”).



Linear Regression

Maximizing Likelihood

Concisely in matrix form (X̃n×(k+1) has first column of 1s):

Yn×1 = X̃n×(k+1) · A(k+1)×1 + en×1

Then we are minimizing:

(Y − X̃ · A)T1×n · (Y − X̃ · A)n×1 = eT · e
Derivation:

(Y − X̃ · A)T · (Y − X̃ · A) = (Y T − AT · X̃T ) · (Y − X̃ · A)

= Y TY − Y T X̃A− AT X̃TY + AT X̃TXA

= Y TY − 2Y T X̃A + AT X̃T X̃A

Differentiate (wrt A) and set to 0:

0 = −2X̃TY + 2X̃TXA

X̃T X̃A = X̃TY

A = (X̃T X̃ )−1X̃TY



Linear Regression

Polynomial Regression

For a single X , Y = a + bX is a line.

But may want a higher order polynomial (Y is height of artillery shell,
X is time...), then Y = a + bX + cX 2.

Y and X have a non-linear relationship, but problem still linear with
respect to parameters!

Can use same machinery, just add a column for X 2 to your data!



Linear Regression

Interactions

Features can affect outcomes in synergistic ways, not just individually.

Examples: coca cola + mentos, alcohol + prescription painkiller.

Simple to modify regression models to handle this:

Same machinery as before.

w1, w2 are known as main effects.

w12 is known as an interaction effect.

In practice, interaction effects are often smaller than main effects
(“sparsity of effects principle”).
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Logistic Regression

Logistic Regression

Data: n (continuous or discrete) realizations of ~X , binary realization
of Y , written as Dn×(k+1) or ~Yn×1 and ~Xn×k as before.

Model:

p(Y = 1 | ~x ; ~w) =
1

1 + exp
{
−
∑k

i=1 xi · wi

} .
Likelihood (for Y conditional on ~X ):

LY |~X (D; {w1, . . .wk}) =

 ∏
j :yj=1

1

1 + exp
{
−
∑k

i=1 xji · wi

}
 ·

 ∏
j :yj=0

1− 1

1 + exp
{
−
∑k

i=1 xji · wi

}




Logistic Regression

Logistic Regression (cont.)

Log Likelihood:

logLY |~X (D; {w1, . . .wk}) =−
∑
j :yj=1

log

(
1 + exp

{
−

k∑
i=1

xji · wi

})
+

∑
j :yj=0

log

(
1 + exp

{
−

k∑
i=1

xji · wi

})

Can show (board):

∂ logL
Y |~X (D; ~w)

∂~w
=

n∑
j=1

xj(1:k)(yj − p(Y = 1 | xj(1:k)))

Setting this to 0 yields transcendental equations.



Logistic Regression

Interlude: Semi-Parametric Models

Regression models so far were parametric models of p(Y | ~X ).

Alternative view: semi-parametric models of p(Y , ~X ).

Restricted moment model:

Y = µ(~X ; ~w) + ε;E [ε | ~X ] = 0.

Mean is parametric, noise is non-parametric: p(ε | ~X ) can be almost
anything, provided the expected value is 0!

Logistic regression is in this class (why?)

In semi-parametric models we will often think of a vector of
parameters (β, η) where β is a finite-dimensional vector of target
parameters, and η is an infinite-dimensional vector of nuisance
parameters.

Here β = ~w is of interest, and whatever crazy parameters p(ε | ~X )
and p(~X ) have are nuisance.
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Logistic Regression

Inference In Semi-Parametric Models

We want to make inferences on β. Want to construct regular,
asymptotically linear (RAL) estimators, that look like:

n1/2(β̂(~Xn×k)− β) = n−1/2
n∑

i=1

φ(~xi(1:k)) + op(1).

Asymptotically linear: looks like a sum. Regular (loosely): does the
same algorithm everywhere, does not special case any part of the
parameter space.
β are true parameters, op(1) is something tiny that goes to zero, and
φ(.) is an object called an influence function.
φ(.) tells you how much each data row influences the final answer.
Also tells us the asymptotic variance of estimator since:

n1/2(β̂(~Xn×k))− β)
D→ N (0,E [φφT ]).

If we learn φ(.) for a given β in some semi-parametric model, we are
done. May discuss deriving φ(.) later...



Logistic Regression

Influence Functions For The Logistic Model

Can be shown (notes later) that the class of RAL estimators for
β = ~w of the semi-parametric logistic regression model is:

n∑
i=1

A(~xi(1:k)){yi − µ(~xi(1:k); ~w)} = 0;A(~x) any function of ~x .

Note that the MLE is in this class, with A(~x) = ~x .

In fact is the most efficient choice for A(~x).

Can solve these equations by the Newton-Raphson method.



Logistic Regression

Newton Method

Say we want to find the minimum of a smooth f .

Can approximate f “near” a point x0, using Taylor expansion:

f (x) = f (x0) + (x − x0) · f ′(x0) +
1

2
f ′′(x0)(x − x0)2 + . . . .

So:

∂f (x)

∂x
≈ f ′(x0) + f ′′(x0)(x − x0) and so

x = x0 −
f ′(x0)

f ′′(x0)

Approximated expansion so approximate solution – get a new x .
Iterate this! (board picture).

If x = x0, the process stops.

Can show that if we start close enough to the true x0, will rapidly
converge to it.



Logistic Regression

Multivariate Newton Method

Logistic regression has lots of parameters, so need f (~x), for a set ~x .

Can define multivariate version of Taylor’s expansion (will skip this).

Will need a vector (Jacobian) of derivatives

∇f (~x) = (f ′(~x)x1 , f
′(~x)x2 , . . . f

′(~x)xk )

and a matrix (Hessian) of second derivatives:

H(~x) =

 f ′′(~x)x1,x1 f ′′(~x)x1,x2 . . . f ′′(~x)x1,xk

. . . . . . . . . . . .
f ′′(~x)xk ,x1 f ′′(~x)xk ,x2 . . . f ′′(~x)xk ,xk


Update rule:

~x (m+1) = ~x (m) − H(~x (m))−1 · ∇f (~x (m))



Logistic Regression

First and Second Derivatives for Logistic Regression

Already have:

∂ logL
∂~w

=
n∑

i=1

xi(1:k)(yi − p(Y = 1 | xi(1:k)))

Can similarly show (board):

∂ logL
∂~w∂~wT

= −
n∑

i=1

xi(1:k)(xi(1:k))Tp(Y = 1 | xi(1:k))(1−p(Y = 1 | xi(1:k)))

Both linear and logistic model fitting implemented as a part of glm
function in R.



Overfitting and Regularization

Fitting Probabilistic Models and Causal Inference

In ML and Statistics, probabilistic models are used for a wide variety
of problems – classification, density estimation, reinforcement
learning, etc.

Will use them in causal inference as part of a broader framework
linking counterfactual with factual.

Need statistical models to make good use of factual data...

But how do we interpret an analysis causally, in an appropriate way?

Need a causal model. Will start with the simplest one next time.



Overfitting and Regularization

Next time: Counterfactuals And
Randomization Based Inference


	The Bootstrap
	Linear Regression
	Logistic Regression
	Overfitting and Regularization

