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Review

Review

Counterfactuals as functions of observed data.

Estimation strategies.

Causal contrasts: average causal effect, direct and indirect effects.

Counterfactual reasoning for learning policies.

Represented causal assumptions via graphs (SWIGs).

Assumed we knew the graph.

In many domains, structural knowledge is hard to come by (genomics,
for instance).

What do we do then?
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Review

DAG Models (Refresher)

Three definitions of a (statistical) DAG model.

A

B

D

C

E

Factorization:

p(A,B,C ,D,E ) = p(E | D)p(D | B,C )p(C | A)p(B | A)p(A)

Local Markov property:

(C ⊥⊥ B | A), (D ⊥⊥ A | B,C ), (E ⊥⊥ A,B,C | D).

Global Markov property: for any ~A, ~B, ~C ,

if ~A is d-separated from ~B given ~C in G then ~A ⊥⊥ ~B | ~C in p( ~V ).
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Structure Learning Introduction

How To Learn A DAG From Data?

Global Markov property is a one way implication.

If we know the DAG, and want to know what it implies about the
data, it’s perfect!

But now we want to know what the data implies about the DAG.

Need another assumption to reverse implication.

Faithfulness: for any ~A, ~B, ~C ,

~A is d-separated from ~B given ~C in G if and only if ~A ⊥⊥ ~B | ~C in p( ~V ).

Somewhat controversial assumption.
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Structure Learning Introduction

Faithfulness

Think of faithfulness is an additional property that p( ~V ) factorizing
according to G may satisfy.

Most p( ~V ) will be faithful (unfaithful distributions form a set of
measure zero).

So we should be ok, right? Two caveats:

In finite samples, may not be able to tell unfaithful from nearly
unfaithful p( ~V ), and there are many more of those.
Nature does not pick distributions at random. May evolve unfaithful
situations for evolutionary reasons (homeostasis).
In practice: should justify why faithfulness is sensible for the problem.

6 / 22



Structure Learning Introduction

Structure Learning Algorithms

Assume there is a graph G( ~V ) with k vertices, and a distribution
p( ~V ) factorizing relative to G.

INPUT: a dataset ~Xn×k (assumed sampled independently from p( ~V ).

OUTPUT: a set of graphs consistent with what we know about ~Xn×k

(hopefully including G).

This is an unsupervised learning problem.

We want to find a sensible causal description of the data.

Lots of ways of doing this!
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Structure Learning Introduction

Types Of Structure Learning

Constraint based learning (today):

Find constraints that hold in ~Xn×k .
Rule out graphs inconsistent with constraints we found.
Return what’s left.

Score based learning (next time):
Assign a score to any graphical model.
Scores typically reward fit, but also regularize (want a concise
description of the data).

Do search (model selection) for high scoring models given ~Xn×k .

These are asymptotically equivalent, but behave differently in finite
samples.

“Parametric” structure learning:
Make strong additional assumptions on p( ~V ).
Orient edges using those assumptions.
Examples: additive noise models, structure learning as classification,
etc.
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Constraint Based Structure Learning

Constraint-Based Structure Learning

Say we had a big list of all conditional independence constraints in
p( ~V ) faithful with respect to G.

What can we say about G?

If for some A,B ∈ ~V , there is some ~S ⊆ ~V \ {A,B}, such that
A ⊥⊥ B | ~S , then A and B do not have an edge in common!

Since we can do this for every pair (A,B), we can use conditional
independence constraints to learn the skeleton of the graph:

We know where the edges are (and are not), but not how they are
oriented.
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C

E A

B

D

C

E

We know where the edges are (and are not), but not how they are
oriented.
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Constraint Based Structure Learning

Learning Edge Orientations

Say we had a big list of conditional independences and the skeleton.

Can we use this information to orient edges?

Yes!
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Constraint Based Structure Learning

Learning Edge Orientations

Say we had a big list of conditional independences and the skeleton.

Can we use this information to orient edges?

Yes!

Colliders: if A ⊥⊥ B | ~S , and A− C − B is in the skeleton, and C 6∈ ~S ,
then this can only happen if A→ C ← B.
Acyclicity: if we have A1 → A2 → . . .→ Ak and A1 − Ak , then this
edge better be A1 → Ak .
How many rules like that do we need? Maybe a lot more?
What if we cannot orient edges?

10 / 22



Constraint Based Structure Learning

Issues With Constraint Based Structure Learning

Unclear how many edge orientation rules we need.

What if we can’t orient some edge?

How many tests do we need to do in the worst case?

For k vertices, O(
(k
2

)
· 2k−2) tests, must check all possible subsets

~S ⊆ ~V \ {A,B}, for every A,B pair.

How do we learn conditional independence holds from a finite dataset
~Xn×k?

Hypothesis testing (recall: Fisher’s test). Tests can have type 1 and
type 2 errors. If we orient based on erroneous tests, we get in trouble.
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Constraint Based Structure Learning

Addressing Structure Learning Issues

If the graph is very dense (lots of edges), cannot avoid doing many
tests.

If the graph is sparse (few edges), can do better by being clever with
tests.

Try small sets first, remove edges as you go.

Show a small set of rules orients as many edges as possible.

Later: how to deal with hypothesis testing?
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Constraint Based Structure Learning

The PC Algorithm

Start with a complete undirected graph G with n vertices.
For i = 0, . . . , n − 2,

For every adjacent pair A,B in G,
if (A ⊥⊥ B | ~S), (|~S | = i , ~S ⊂ nbG(A) ∪ nbG(B) \ {A,B})), remove

edge A− B from G, add ~S to sepset(A,B), sepset(B,A).

For any non-adjacent A,B such that A− C − B in G, if
C 6∈ sepset(A,B), orient A→ C ← B.

Repeat as long as orientations are possible:

If A→ B − C , and A not adjacent to C , orient B → C
(no new colliders).
If A1 → A2 → . . .→ Ak , and A1 − Ak , orient A1 → Ak

(no cycles).
If A− B → C , A− D → C , A− C , B not adjacent to D, orient
A→ C (no new colliders and no cycles).
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Constraint Based Structure Learning

Observational Equivalence (Review)

Consider the following two DAGs:

A B C A B C

Local Markov property gives same independence: (A ⊥⊥ C | B).

In fact, the only independence in this model.

If one graph is causal, the other isn’t...

These graphs are called observationally equivalent.

Big problem for structure learning! Can only learn graph up to
equivalence class.
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Constraint Based Structure Learning

Observational Equivalence

Simple characterization of equivalence of DAGs:

Theorem (Verma and Pearl)

Two distinct DAGs G1, G2 represent the same statistical DAG model if and
only if they share skeletons and unshielded colliders (A→ C ← B, A,B
not adjacent).

Example:

A

B

D

C

A

B

D

C

A

B

D

C

All DAGs give the same model: (B ⊥⊥ C | A), (D ⊥⊥ A | B,C ).
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Constraint Based Structure Learning

Equivalence Classes Of DAGs And Patterns

Can represent all DAGs in an equivalence class by a single mixed
graph called a pattern.

Pattern has two types of edges, directed (→) and undirected (−).

Any DAG in an equivalence class of a pattern can be constructed by
orienting − edges without creating new colliders.

Example: this pattern gives three DAGs on the previous slide.

A

B

D

C
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Constraint Based Structure Learning

Completeness Of The PC Algorithm

Assume the PC algorithm has access to a conditional independence
oracle (all tests are correct).

Then the PC algorithm is complete (always returns a pattern
representation of the equivalence class).
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Constraint Based Structure Learning

Statistical Issues

How to do conditional independence hypothesis testing?

If conditioning set ~S is large, need strong assumptions or lots of data.

In practice, use parametric tests, based on partial correlations, written
ρXY .Z .

Can also use non-parametric tests.
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Constraint Based Structure Learning

Partial Correlation

(Pearson’s) correlation ρXY is defined as

ρXY ≡
Cov(X ,Y )

σX · σY
=

E [X − E [X ]] · E [Y − E [Y ]]

σX · σY
,

σX : standard deviation of X , σY : standard deviation of Y .

Partial correlation given ~Z , ρ
XY .~Z

is defined as

ρrX rY where rX is the residual of (linear) regressing X against ~Z , and

rY is the residual of (linear) regressing Y against ~Z .

Sample version ρ̂
XY .~Z

substitutes sample estimates.

In certain models (e.g. p( ~V ) is multivariate normal), ρ
XY .~Z

= 0 is

equivalent to X ⊥⊥ Y | ~Z .

Standard tests exist for this in the stats literature.

The point: polynomial amount of work, modest sample requirements.
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Constraint Based Structure Learning

Testing No Partial Correlation

Can test using Fisher’s z-transform of sample partial correlation:

z(ρ̂
XY .~Z

) = 0.5 · log

(
1 + ρ̂

XY .~Z

1− ρ̂
XY .~Z

)
.

Reject if test statistic is in “unusual location” in its distribution
(approximately normal):√

N − |~Z | − 3 · |z(ρ̂
XY .~Z

)| > Φ−1(1− α/2).

Φ(.) is a cdf of normal, Φ(.) is a quantile function of normal.

α is significance level (e.g. 95%). Absolute value and α/2 because
this is a two-sided test.
√
N − 3 holds for ~Z = ∅, subtract degrees of freedom for larger ~Z .
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Constraint Based Structure Learning

Structure Learning In Practice

PC Algorithm can be sensitive to test errors.

Wrong edges in skeleton propagate to orientations in hard to analyze
ways.

Lots of work on robust versions.

Lack of uniform consistency: probability of error does not just depend
on sample size n (!), also depends on true graph G.

This is a general issue with structure learning problems.

What if there are hidden variables?
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Constraint Based Structure Learning

Next time: Score Based Structure
Learning.
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