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Example Of Mediation

Decomposing Causal Effects

(Total) causal effects: E [Y (1)]− E [Y (0)]:
Randomize (Daniel 1-15, Lindt, Pierce, Neyman, Fisher):

A

U

Y

Observe confounders/stratify:

A

U

Y

Parametric identification or bounds:
Instrumental variable + assumptions (P. Wright, 1928):

Z A

U

Y

Today: decomposing a causal effect into pathway components.
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Example Of Mediation

Motivating “Direct Effects”: Discrimination

“The central question in any employment-discrimination case is whether
the employer would have taken the same action had the employee been of
a different race (age, sex, religion, national origin etc.) and everything else
had been the same.”

In Carson versus Bethlehem Steel Corp., 70 FEP Cases 921, 7th Cir.
(1996).
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Example Of Mediation

Mediation Analysis (Linear Case)

A

M

Y

α2 β

α1

Total effect model:
Y = α0A + ε0

Mediation models:

Y = α1A + βM + ε1

M = α2A + ε2

If above graph is true, α0 = ‘total effect”, α1 = “direct effect,” α2 · β
= “indirect effect”
Sewall Wright (1918) showed:

total effect = direct effect + indirect effect

α0 = α1 + α2 · β
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Example Of Mediation

Direct And Indirect Effects With Arbitrary Models

Cannot interpret coefficients causally in non-linear models.

Want a general view, tying back to Hume/Lindt/experiments

Will combine potential outcomes in a certain way to encode influence
of A on Y along certain pathways.
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Example Of Mediation

Motivating “Direct Effects”: Discrimination

G (gender), C (characteristics), H (hiring).

G

C

H

Compare resumes of men:

H(G = male,C (G = male)) = H(G = male)

and same resumes with names switched to female ones:

H(G = female,C (G = male)).
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Example Of Mediation

Motivating “Path-Specific Effects”: Etiology by Pathway

A
H

C
Y

A (smoking), C (cancer), H (heart disease), Y (outcome).

A affects Y via smoke (C pathway), and via nicotine
(H pathway).

“Y if given nicotine-free cigarettes:” Y (C (a),H(a′)).

“Y if given nicotine patches:” Y (C (a′),H(a)).
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Treatment Decomposition

Defining Direct Effects

Total effect: E [H(g = 1)]− E [H(g = 0)]:

G

C

H

Say G : male (0) vs female (1) name on resume, H is hiring decision
(1 is yes, 0 is no).

What is a sensible question for discrimination?

Compare hiring based on male resumes with same resumes but with
names switched to female:

E [H(g = 0)]− E [H(g = 1,C (g = 0))]

Or compare female resumes with same resumes but with names
switched to male:

E [H(g = 1)]− E [H(g = 0,C (g = 1))]

These are called natural direct effects.
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Treatment Decomposition

Defining Indirect Effects

Non-zero direct effect corresponds to discrimination in this setting.

Can also define indirect effect similarly.

Compare hiring based on a woman’s resume with a man’s name vs
hiring based on a man’s resume and a man’s name:

E [H(g = 1,C (g = 0))]− E [H(g = 1,C (g = 1))].

Or (with genders switched):

E [H(g = 0,C (g = 1))]− E [H(g = 0,C (g = 0))].

We get the following decomposition (same with flipped genders):

E [H(1)]− E [H(0)]︸ ︷︷ ︸
ACE

= (E [H(1)]− E [H(0,C (1))])︸ ︷︷ ︸
Direct

+ (E [H(0,C (1))]− E [H(0)])︸ ︷︷ ︸
Indirect
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Treatment Decomposition

Nonparametric Effect Decomposition

Defined direct and indirect effects and obtained a decomposition of
the overall (total) causal effect.

Did not mention statistical models (e.g. linear regressions) at all.

Used potential outcomes directly.

Can use any statistical model.

But first, must make sure we are identified from observed data.
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Identification

Simplest Interesting Mediation Setting

~X a vector of baseline factors/confounders (as before).

A a treatment we are decomposing, M a mediator, Y an outcome.

As before → means “directly causes.”

A

M

Y

X

To get direct and indirect effects, need to identify the following three
distributions: p(Y (1)), p(Y (0)), p(Y (1,M(0))).

Need assumptions.

12 / 25



Identification

Identifying Assumptions (Causal Model)

Identifying Assumptions:

Conditional ignorability: M(a) ⊥⊥ A | ~X and Y (a,m) ⊥⊥ {A,M} | ~X for
all a,m.
Means conditioning on ~X suffices to deal with confounding between
A,M and Y , and between A and M.

M(a′) ⊥⊥ Y (m, a) | ~X for all a, a′.

Means within levels of ~X , causal mechanisms for M and Y have
independent sources of noise, even if treatments “mismatch.”
Circuit analogy
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Identification

Identifying Functionals

Since we have conditional ignorability for Y and A,

p(Y (a)) =
∑
~X

p(Y | A = a, ~X )p(~X ).

Tricky case is p(Y (a,M(a′))):
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p(Y (a)) =
∑
~X

p(Y | A = a, ~X )p(~X ).

Tricky case is p(Y (a,M(a′))):

p(Y (a,M(a′))) =
∑
m

p(Y (a,m),M(a′) = m)

=
∑
m, ~X

p(Y (a,m),M(a′) = m | ~X )p(~X )

=
∑
m, ~X

p(Y (a,m) | ~X )p(M(a′) = m | ~X )p(~X )

=
∑
m, ~X

p(Y (a,m) | a,m, ~X )p(M(a′) = m | a′, ~X )p(~X )

=
∑
m, ~X

p(Y | a,m, ~X )p(M = m | a′, ~X )p(~X )
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Estimation

Identifying Functionals

Direct and indirect effects look like:∑
~X ,m

{
E [Y | A = 1,m, ~X ]− E [Y | A = 0,m, ~X ]

}
p(m | A = 0, ~X )p(~X )

How would we estimate this?

With ACE either modeled Y or A.

Have three models here: for Y , for M, and for A.

Turns out any two are enough.
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Estimation

Parametric G-formula (Y and M Models)

Model E [Y | A,M, ~X ;α], model p(M | A, ~X ;β).

Fit by MLE.

Use empirical approximation for p(~X ).

If m is discrete, sum explicitly:

1

n

∑
m,i

E [Y | a,m, ~Xi ; α̂] · p(M = m | a′, ~Xi ; β̂)

If m is continuous, integrate by sampling:

1

n

∫
m

∑
i

E [Y | a,m, ~Xi ; α̂] · p(M = m | a′, ~Xi ; β̂)

For certain parametric families for Y ,M can do integral in closed
form.
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Estimation

IPW (A and M Models)

Model p(A | ~X ; γ), model p(M | A, ~X ;β).

Fit by MLE.

Use empirical approximation for p(~X ).

Remember, standard IPW gives us E [Y (1)] = E [Y (1,M(1))]:

1

n

∑
i

I(A = 1)Yi

p(A = 1 | ~Xi ; γ̂)

Want to somehow use M model to get mean of E [Y (1,M(0))].

Idea: just reweigh by the ratio:
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Idea: just reweigh by the ratio:

1

n

∑
i

I(A = 1)Yi

p(A = 1 | ~Xi ; γ̂)
· p(M | A = 0, ~Xi ; β̂)

p(M | A = 1, ~Xi ; β̂)
.
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Estimation

Mixed Approach (Y and A Models)

Model p(A | ~X ; γ), model E [Y | A,M, ~X ;α].

Fit by MLE.

Use empirical approximation for p(~X ).

Remember, standard parametric g-formula gives us
E [Y (1)] = E [Y (1,M(1))]:

1

n

∑
i

E [Y | a, ~Xi ; α̂]

Want to somehow use A mode to get mean of E [Y (1,M(0))].

Idea: reweight observed 0 cases for Mi to get Mi (0), but then use Y
model with A = 1 and those Mi :
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1

n

∑
i

I(A = 0)

p(A = 0 | ~Xi ; γ̂)
· E [Y | A = 1,mi , ~Xi ; α̂]
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Estimation

Parametric G-Formula Pros and Cons

Recall:
1

n

∑
m,i

E [Y | a,m, ~Xi ; α̂] · p(M = m | a′, ~Xi ; β̂)

M,Y pro: most efficient use of data if models are right.
M,Y pro: fairly robust in practice.
M,Y con: easy to misspecify.
M,Y con: for continuous M, need to model density, have to integrate
numerically.
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Estimation

IPW Pros and Cons

Recall:
1

n

∑
i

I(A = 1)Yi

p(A = 1 | ~Xi ; γ̂)
· p(M | A = 0, ~Xi ; β̂)

p(M | A = 1, ~Xi ; β̂)
.

M,A pro: avoids modeling of complex Y .
M,A con: inefficient use of data.
M,A con: instability with small weights.
M,A con: for continuous M, need to model density, or model ratio
directly (can you think of how?)
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Estimation

Mixed Approach Pros and Cons

Recall:

1

n

∑
i

I(A = 0)

p(A = 0 | ~Xi ; γ̂)
· E [Y | A = 1,Mi , ~Xi ; α̂]

Y ,A pro: least amount of modeling: a mean and a binary probability.
Y ,A con: somewhat inefficient use of data (but better than pure IPW).
M,A con: some instability with small weights (but better than pure
IPW).
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Estimation

Testability

Assumption Y (a,m) ⊥⊥ M(a′) | ~X is kind of strange.

Easy to test in circuits, not possible in people.

Alternative is to explicitly split treatment (smoke/nicotine):

A

A′ A′′

M Y

Can check assumption via a hypothetical randomized trial that
decomposes treatment.

Alternative is sensitivity analysis (later).
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Estimation

Representing Counterfactuals In Mediation Problems

Recall, mediation as treatment decomposition

AM ,AY are deterministic components of A associated with M,Y .

Can intervene on them separately.

Just split nodes as before (now into multiple pieces).

aM , aY potentially different.

Read off independence by d-separation: Y (m, aY ) ⊥⊥ M(aM).

A

AM AY

M Y

A

aM aY

M(aM) Y (aM , aY )

A

aM aY

M(aM) m Y (m, aY )
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Estimation

Advanced Topic: Path-Specific Effects

Direct effect: along one arrow.

Indirect effect: along all other arrows.

Maybe we want effect along a specific path:

A

D

M

Y

Can do this by generalizing earlier idea.
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Estimation

Next time: Representing Dependence,
and Independence Using Graphs.
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