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Thinking About Confounding (Graphically)

Last Time

Formalized “causal effect”:

E [Y (1)]− E [Y (0)].

Linked with observed data using:

Consistency: Y (A) = Y .
Ignorability: Y (a) ⊥⊥ A for all a.

Assessing effect size (non-parametric for one treatment, parametric
for many).

Test for no effect (Fisher’s test).

Introduced the “missing completely at random” model.

Today: what if A is not randomly assigned? Most data is like this!
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Thinking About Confounding (Graphically)

Introducing: Causal Graphs

Will think about causal relationships using graphs.

For now: nodes are variables, → means “directly causes.”

Will make more precise as we go.

Absences of nodes and edges are important.

Randomization example (one treatment A, one outcome Y ).

Observed situation:

Hypothetical situation (what if A were a):

A a Y (a)

Think of hypothetical A = a as setting a variable to a value in a
debugger. Sometimes called an intervention.

Differentiate between what variable does normally (A in the graph)
and the hypothetical value (a in the graph).
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Thinking About Confounding (Graphically)

Introducing: Causal Graphs

Note: no path from A to Y (a), which means (will make precise later)
A ⊥⊥ Y (a).

A a Y (a)

General method of constructing graphs like this, and reading
independences off introduced later.

How do we represent A not being randomly assigned graphically?

Intuition: there is a common cause U of both A and Y !

What happens if U exists and is unobserved.
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Thinking About Confounding (Graphically)

Unobserved Confounders

Simplest example where association is not causation. Why? Imagine
A does not cause Y at all!

A

U

Y

Example: “smoking lesion problem” in philosophy (Andy Egan’s
phrasing):
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Thinking About Confounding (Graphically)

Unobserved Confounders

Simplest example where association is not causation. Why? Imagine
A does not cause Y at all!

A

U

Y

Example: “smoking lesion problem” in philosophy (Andy Egan’s
phrasing):

Susan is debating whether or not to smoke. She knows that smoking is
strongly correlated with lung cancer, but only because there is a common

cause – a condition that tends to cause both smoking and cancer. Once we
fix the presence or absence of this condition, there is no additional

correlation between smoking and cancer. Susan prefers smoking without
cancer to not smoking without cancer, and prefers smoking with cancer to

not smoking with cancer. Should Susan smoke?
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Thinking About Confounding (Graphically)

Decision Theory For Smoking Lesion

The point of smoking lesion is that association of A and Y can be
very high! That is:

p(Y = cancer | A = smoke) = high

p(Y = no cancer | A = do not smoke) = high

Most probable states of the world: cancer and smoking, and no
cancer and no smoking.

Second world has more utility for Susan (having cancer is much worse
than pleasure from smoking).

So if Susan uses conditional probabilities to decide, she will not
smoke...

Intuitively this seems wrong. It’s all about that U: once it is fixed,
whether Susan smokes or not does not influence value of Y
(Y ⊥⊥ A | U).
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Thinking About Confounding (Graphically)

Evidential vs Causal Decision Theory

Maximizing utility based on conditional probabilities is
evidential decision theory (EDT).

Maximizing utility using “causal considerations” is
causal decision theory (CDT).

In the smoking lesion example, CDT does the right thing, and EDT
does not.

There is a long argument about these problems in philosophy (leaving
aside for now).

In simple cases, the lesson is:

Unless you can deal with the U somehow.
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Thinking About Confounding (Graphically)

Dealing with Confounding (a Graphical View)

Randomize (Daniel 1-15, Lind, Pierce, Neyman, Fisher):

A

U

Y

Observe confounders/stratify, today:

A

U

Y

Instrumental variable + assumptions (P. Wright, 1928), next time:

Z A

U

Y

Find a strong independent mediator (Pearl), later:

A W

U

Y
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Observed Confounders

Dealing with Observed Confounders

Observed situation:

A

U

Y

Representing hypothetical A = a as before:

Note: A and Y (a) connected via U.

Implies (will show later) that A 6⊥⊥ Y (a).

Association is not causation: p(Y | A = a) 6= p(Y (a))!

Can we get p(Y (a)) in some other way?

10 / 1



Observed Confounders

Dealing with Observed Confounders

Observed situation:

A

U

Y

Representing hypothetical A = a as before:

A a

U

Y (a)

Note: A and Y (a) connected via U.

Implies (will show later) that A 6⊥⊥ Y (a).

Association is not causation: p(Y | A = a) 6= p(Y (a))!

Can we get p(Y (a)) in some other way?

10 / 1



Observed Confounders

Dealing with Observed Confounders

Observed situation:

A

U

Y

Representing hypothetical A = a as before:

A a

U

Y (a)

Note: A and Y (a) connected via U.

Implies (will show later) that A 6⊥⊥ Y (a).

Association is not causation: p(Y | A = a) 6= p(Y (a))!

Can we get p(Y (a)) in some other way?

10 / 1



Observed Confounders

Ignorability Conditional On A Confounder

Recall smoking lesion: if Susan had the gene (U = 1), Y (a) fully
determined by U.

Same if Susan did not have the gene (U = 0).

In other words: {Y (1),Y (0)} ⊥⊥ A | U.

This is called conditional ignorability.

So, conditionally on U, can repeat earlier reasoning:

But what if we don’t know value of U?

Can average across possible levels of U using prior probablity of
observing p(U = u).

In other words, if smoking/cancer gene is rare p(U = 1) = 0.01, give
most weight to “no gene.”:
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But what if we don’t know value of U?

Can average across possible levels of U using prior probablity of
observing p(U = u).

In other words, if smoking/cancer gene is rare p(U = 1) = 0.01, give
most weight to “no gene.”:

p(Y | U = 1,A = a) · 0.01 + p(Y | U = 0,A = a) · 0.99.
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Observed Confounders

Conditional Ignorability in General

Treatment A (usually binary, but not necessary).

Outcome Y (discrete or continuous).

A vector of baseline factors ~X . Picture (observed and counterfactual):

A

~X

Y A a Y (a)

~X

Predicting what will happen to Y if A = a:

Average causal effect (ACE):

This is called stratification or adjustment formula.

Old idea: ‘adjusting for,” “controlling for” refers to this.
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Average causal effect (ACE):
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∑
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Observed Confounders

Formal Derivation Of The Adjustment Formula

p(Y (a)) =
∑
~x

p(Y (a) | ~x)p(~x) by chain rule of probability

=
∑
~x

p(Y (a) | A = a, ~x)p(~x) since A ⊥⊥ Y (a) | ~X

=
∑
~x

p(Y | A = a, ~x)p(~x) by consistency, Y (A) = Y .
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Estimation Strategies

Likelihood Modeling For Adjustment Formula

Conditional ignorability gives us a target to estimate from observed
data: ∑

x

{
E [Y | A = 1, ~X = ~x ]− E [Y | A = 0, ~X = ~x ]

}
p(~x).

Remember the approach with a vector of treatments ~A: model
E [Y | ~A].

Can also do that here, put a model on E [Y | A, ~X ] (our favorite
regression model).

Do not need to model p(~x), can use the empirical distribution (1/n
on every observed point).

This is called the parametric g-formula.
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Estimation Strategies

Parametric g-formula (Step By Step Guide)

Given n data points on A,Y , ~X , and assuming conditional ignorability and
consistency:

1 Posit statistical model for E [Y | A, ~X ;α].

2 Fit model by MLE, yielding α̂.

3 Estimate ACE by:

1

n

(∑
i

E [Y | A = 1, ~xi ; α̂]− E [Y | A = 0, ~xi ; α̂]

)

4 Report confidence intervals using bootstrap.
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Estimation Strategies

Regularization In Causal Inference

What happens if we regularize E [Y | A, ~X ;α] in estimator

1

n

(∑
i

E [Y | A = 1, ~xi ; α̂]− E [Y | A = 0, ~xi ; α̂]

)

Imagine effect of A on Y is weak (usual case).

Regularizer will remove coefficient for A!

We regularized our effect away to 0.

Important lesson: regularization has to respect target of inference.

In classical ML problems, E [Y | ~X ] or p(Y , ~X ) is directly relevant.

In causal inference E [Y | ~X ] is a nuisance model (don’t care about it
directly, just need it to compute ACE).
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Estimation Strategies

Validating Answers

In machine learning, can learn a very good predictor for Y in terms of
~X .

Can check quality directy using cross-validation.

Cannot do that with ACE as it is a counterfactual quantity (unless A
is randomized!)

We are using observed data to predict result of a hypothetical
experiment.

Unless we actually do an experiment and get data, cannot tell if we
are right!

This is why science is hard, we can’t just use a fancy algorithm and
some data to create science out of nothing!

Validation is a hard problem. Causal inference from observed data
suggests but does not establish findings.

17 / 1



Estimation Strategies

Validating Answers

In machine learning, can learn a very good predictor for Y in terms of
~X .

Can check quality directy using cross-validation.

Cannot do that with ACE as it is a counterfactual quantity (unless A
is randomized!)

We are using observed data to predict result of a hypothetical
experiment.

Unless we actually do an experiment and get data, cannot tell if we
are right!

This is why science is hard, we can’t just use a fancy algorithm and
some data to create science out of nothing!

Validation is a hard problem. Causal inference from observed data
suggests but does not establish findings.

17 / 1



Estimation Strategies

Validating Answers

In machine learning, can learn a very good predictor for Y in terms of
~X .

Can check quality directy using cross-validation.

Cannot do that with ACE as it is a counterfactual quantity (unless A
is randomized!)

We are using observed data to predict result of a hypothetical
experiment.

Unless we actually do an experiment and get data, cannot tell if we
are right!

This is why science is hard, we can’t just use a fancy algorithm and
some data to create science out of nothing!

Validation is a hard problem. Causal inference from observed data
suggests but does not establish findings.

17 / 1



Estimation Strategies

Validating Answers

In machine learning, can learn a very good predictor for Y in terms of
~X .

Can check quality directy using cross-validation.

Cannot do that with ACE as it is a counterfactual quantity (unless A
is randomized!)

We are using observed data to predict result of a hypothetical
experiment.

Unless we actually do an experiment and get data, cannot tell if we
are right!

This is why science is hard, we can’t just use a fancy algorithm and
some data to create science out of nothing!

Validation is a hard problem. Causal inference from observed data
suggests but does not establish findings.

17 / 1



Estimation Strategies

Ways For Causal Inferences To Go Wrong

Say we estimate ACE = 2.3± 0.4 using parametric g-formula, but
experiment does not replicate, reports no significant effect (0).

Why would that happen?

Causal model is wrong (we think all U are observed, but some U are
not).

Causal model is right, but statistical model E [Y | A, ~X ] is wrong.
Causal model is right, statistical model is right, population in our
analysis vs experiment is different (internal vs external validity).

Cannot test causal model without experimentation.

Later: learning models from data, ACE under different models.

Can check suitability of statistical model. Can use flexible models.
Can use robust models (may discuss this later). Alternatives to
modeling E [Y | A, ~X ] (next).

Movement towards larger, more representative studies to address
validity.
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Estimation Strategies

Alternative View Of Conditional Ignorability

Before: Y (a) (causation) is Y | a (association) if we condition on ~X .

Alternative: A is not randomized because people with different ~X = ~x
are preferentially assigned to 1 vs 0.

Doctors more likely to give sick people treatment, people with free
time are more likely to answer surveys, etc.

Say we want E [Y ] as if A = 1.

E [Y | A = 1] =
∑
i

Yi I(Ai = 1)∑
i I(Ai = 1)

?

Wrong for usual reasons.

Want to compensate for p(A = 1 | ~X = ~x) being low for some ~x .

So just weigh people more if their p(A = 1 | ~X = ~x) is low:

Why would this work?
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Estimation Strategies

Inverse Probability Weighting (Importance Sampling)

Recall definition of E [Y ]:∑
y

y · p(Y = y) =
∑
y ,~x ,a

y · p(y | a, ~x)p(a | ~x)p(~x).

and definition of E [Y (a)]:

Only difference is p(a | ~x) term.

Implies (skipping formal proof) that

is consistent if we have correct model for p(Ai = 1 | ~xi ).

Often know this model (treatment assignment, design, etc).

p(Ai = 1 | ~xi ) is called the propensity score.
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Estimation Strategies

Inverse Probability Weighting (Step By Step Guide)

Given n data points on A,Y , ~X , and assuming conditional ignorablity and
consistency:

1 Posit statistical model for p[A | ~X ;α].

2 Fit model by MLE, yielding α̂.

3 Estimate ACE by:

1

n

(∑
i

Yi
I(Ai = 1)

p(a = 1 | ~xi ; α̂)

)
− 1

n

(∑
i

Yi
I(Ai = 0)

p(a = 0 | ~xi ; α̂)

)

4 Report confidence intervals using bootstrap.
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Estimation Strategies

Augmented IPW

Previous had an estimator that uses E [Y | A, ~X ], and another that
uses p(A | ~X ).

In fact, is possible to combine them as follows:

0 =
I (A = a)

p(A | ~X )
{Y−E [Y | A, ~X ]}+E [Y | A = a, ~X ]−E [E [Y | A = a, ~X ]].

Can solve for E [Y (a)] = E [E [Y | A = a, ~X ]].

Known as the augmented IPW estimator (adding a term to regular
IPW).

Is RAL for E [Y (a)], obtained from the influence function for
E [E [Y | A = a, ~X ]].
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Estimation Strategies

Augmented IPW (Step By Step Guide)

Given n data points on A,Y , ~X , and assuming conditional ignorablity and
consistency:

1 Posit statistical model for p[A | ~X ;α1],E [Y | A, ~X ;α2].

2 Fit models by MLE, yielding α̂1, α̂2.

3 Estimate ACE by:

1

n

∑
i

{Yi − E [Y | ai = 1, ~xi ; α̂2]} I(ai = 1)

p(a = 1 | ~xi ; α̂1)
+ E [Y | ai = 1, ~xi ; α̂2]−

1

n

∑
i

{Yi − E [Y | ai = 0, ~xi ; α̂2]} I(Ai = 0)

p(a = 0 | ~xi ; α̂1)
+ E [Y | ai = 0, ~xi ; α̂2]

4 Report confidence intervals using bootstrap.
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Estimation Strategies

Pros and Cons Of IPW

Pros:

Simpler model p(A | ~X ;α), as A is often binary.
Needed model often known by design.
Simple to fit and implement.
Directly produces a dataset where A is set to a. Can run any analysis
on top, not just estimating E [Y (a)].

Cons:

Not a likelihood method (statistically inefficient).
Dividing by small numbers can lead to problems.
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Estimation Strategies

Pros and Cons Of Parametric g-formula

Pros:

Most efficient method if we know the model E [Y | A, ~X ] (standard
results on MLE).
In practice, has been found to perform well with flexible models and
enough data.

Cons:

Need a more complex model, easy to misspecify.
If we need response surface rather than mean, have to use density
estimation.
Leads to the null paradox for certain queries (will discuss later).
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Estimation Strategies

Pros and Cons Of Augmented IPW

Pros:

Better behaved than IPW.
Doubly robust: consistent if either p(A | ~X ) or E [Y | A, ~X ] is specified
correctly.

Cons:

Less efficient than the parametric g-formula if E [Y | A, ~X ] is correct.
May inherit issues of ordinary IPW (division by small numbers).
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Missing Data Graphs And The Missing At Random Model

Introducing: Missing Data Graphs

Causal models may be represented by two graphs (representing the
observed situations, and the counterfactual situation after we “split
nodes.”).

Missing data models are represented by a single graph, with Xi (1), Xi

and Ri , where Xi (1) and Ri are constrained to cause Xi .
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Missing Data Graphs And The Missing At Random Model

Missing Completely at Random

MCAR: “events that lead to missingness occur independently of
observed and unobserved data.”

Our translation: X1(1) ⊥⊥ R1. Graphically:

X1(1)

X1

R1
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Missing Data Graphs And The Missing At Random Model

Missing at Random

MAR: “events that lead to missingness occur independently of
unobserved data given observed data.”

Our translation: X2(1) ⊥⊥ R2 | X1 (X1 fully observed).

Graphically:

X2(1)

X1

X2

R2

p(X1,X2(1)) = p(X2(1) | X1)p(X1) = p(X2(1) | X1,R2 = 1)p(X1)

= p(X2 | R2 = 1,X1)p(X1).

MAR is very similar to the conditionally ignorable model.
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Missing Data Graphs And The Missing At Random Model

Estimation Under MAR

Two estimators for E [X2(1)] under MAR:

X2(1)

X1

X2

R2

E [X2(1)] =
1

n

∑
i

E [X2 | R2 = 1,X i
1] (likelihood based inference)

E [X2(1)] =
1

n

∑
i

I(R2 = 1)

p(R2 = 1 | X i
1)
X i
2

(
propensity based inference:

Horvitz-Thompson

)
These should look very familiar – just parametric g-formula and IPW.

What about imputation?
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Missing Data Graphs And The Missing At Random Model

Multiple Imputation

Parametric g-formula and IPW both deal with observed rows in a
particular way.

In general, have to make tricky modifications to inferences about
parameters if missingness is present.

From the point of view of a data analyst who doesn’t know a lot
about missing data, it would be nice to “abstract away” tricky issues
and just deal with complete data.

This is where multiple imputation comes in.
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Missing Data Graphs And The Missing At Random Model

Multiple Imputation Overview

Say we are interested in θ̂(~X ), but there is missingness in ~X .

Assume MAR, and a model p(X2 | R2,X1;α).
Fit α (ML or Bayesian methods).
Sample all missing values of X2 using model, and generate m
completed datasets ~X 1, . . . , ~Xm.
Estimate θ̂ ≡ 1

m

∑m
i=1 θ̂(~X i ).

Variance of θ̂ has two parts: variance due to ~X , and variance due to
the imputation (since we are sampling!)

Var(θ̂) =

(
1

m

m∑
i=1

Var(θ̂(~X i ))

)
+

m + 1

m

(
1

m − 1

m∑
i=1

(θ̂(~X i )− θ̂)2

)
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Missing Data Graphs And The Missing At Random Model

Summary

Introduced the conditionally ignorable model, and the missing at
random model, where randomization is conditional on an observed set
of variables (confounders).

Can express target of inference (E [Y (a)] or E [Y (1)]) as a function of
observed data via the adjustment formula) if confounders are all
observed.

Two estimation strategies: parametric g-formula, and IPW.
Many others exist:

Example: match “similar” people based on p(A | ~X ) (propensity score
matching).

We used simple parametric regression models, but can use any
probabilistic model.

General principle in this class: ML and stats teach you fancy models,
this class teaches you how to combine them to predict results of
hypothetical experiments.
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Missing Data Graphs And The Missing At Random Model

Next time: What If Confounders Are
Unobserved?
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