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Uncertainty, Probability, And Conditional Independence

Uncertainty, And Random Variables

Want to an answer questions in an uncertain world:

Will it rain tomorrow?
Who will win the US presidential election in 2020?
How likely am I to get lung cancer if I smoke?

Will use random variables to deal with uncertainty.

Example: “it rained today” (yes/no), call it X1; “status of grass on
my lawn” (wet/dry), call it X2. Other examples?

Will use probability (a number between 0 and 1) to encode
uncertainty.

Probability 1 means event is certain, 0 means event is impossible,
somewhere between 0 and 1 quantifies how likely an event is.

Write p(X1 = yes) to mean “probability it will rain today.”
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Uncertainty, Probability, And Conditional Independence

Joint, Conditional, and Marginal Distributions

Will talk about probabilities of a single event, of multiple events,
probability of one set of events given that we observed another:

p(it rained) = p(X1 = yes) = 1/4

p(it rained and the lawn is wet) = p(X1 = yes,X2 = wet) = 9/40

p(the lawn is wet given that it rained) = p(X2 = wet | X1 = yes) = 9/10

A probability distribution maps event combinations to probabilities
(think of a table of numbers that sum to 1).
A conditional distribution maps event combinations to probability
distributions (which are themselves maps).

X1 X2 p(X1,X2) p(X2|X1)=p(X1,X2)/p(X1) p(X1)=
∑

x2
p(X1,X2 =x2)

yes wet 9/40 9/10 1/4
yes dry 1/40 1/10 1/4
no wet 3/20 1/5 3/4
no dry 3/5 4/5 3/4
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Uncertainty, Probability, And Conditional Independence

Densities

For a real valued (continuous) random variable X , define the
probability density function f (x) to be

f (x) = lim
h→0

p(X ∈ (x , x + h)).

f (x) is the limit of the probability X has value in a little line segment
around every point.

For a set of real valued ~X , can define the joint density f (~x) to be

f (~x) = lim
~h→~0

p(~X ∈ (~x , ~x + ~h)).

f (~x) is the limit of the probability ~X has values in a little hypercube
around every point ~x .

Examples: uniform for x ∈ [0, 1], Gaussian.
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Uncertainty, Probability, And Conditional Independence

Properties of Distributions, and Densities

p(~X ) ≥ 0, f (~x) ≥ 0. (non-negativity).∑
~x p(~X = ~x) = 1,

∫
f (~x)d~x = 1. (normalization).

Note: p(~X ) ≤ 1, same is not true for densities!
You can have f (~x) > 1!

p(X1, . . .Xk) =
∏k

i=1 p(Xi | Xi−1, . . .X1) (chain rule). Example:

p(X3,X2,X1) = p(X3 | X2,X1)p(X2 | X1)p(X1)

= p(X1 | X2,X3)p(X2 | X3)p(X3).

p(X1 | X2) = p(X2 | X1)p(X1)/p(X2) (Bayes rule).
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Uncertainty, Probability, And Conditional Independence

Expected Value and Variance

Expected value of numeric X (E [X ]): average weighted by
probabilities. Example:

X : coin,E [X ] = 0 · 0.5 + 1 · 0.5 = 0.5.

X : 1d6 die,E [X ] = 1 · 1/6 + . . .+ 6 · 1/6 = 3.5.

For densities:

E [X ] =

∫
x · f (x)dx

Variance of X : E [(X − E [X ])2]. Example:

X : coin,Var [X ] = (0− 0.5)2 · 0.5 + (1− 0.5)2 · 0.5 = 0.25

X : 1d6 die,Var [X ] =
6∑

i=1

(i − 3.5)2/6 ≈ 2.92

E [X ] : “average value of X ,” Var [X ] : “spread of X .”
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Uncertainty, Probability, And Conditional Independence

Marginal and Conditional Independence

Random variables A,B are marginally independent if
p(A,B) = p(A) · p(B). Written A ⊥⊥ B.

Example: two fair coins.

Random variables A,B are conditionally independent given C if

p(A | B,C ) = p(A | C )

p(B | A,C ) = p(B | C )

p(A,B | C ) = p(A | C ) · p(B | C )

Written A ⊥⊥ B | C .

Easily generalizes to sets of variables, too!

Properties of conditional independence (semi-graphoid axioms):

~A ⊥⊥ ~B | ~C ⇔ ~B ⊥⊥ ~A | ~C (symmetry)

~A ⊥⊥ ~B ∪ ~D | ~C ⇔ ~A ⊥⊥ ~D | ~C and ~A ⊥⊥ ~B | ~C ∪ ~D (chain rule)

Warning: no finite axiomatization!
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Parameters, Estimators, and Estimates

(Frequentist) Statistics View of Life

A distribution p(x1, . . . , xk) captures properties of a population
(college age people in the USA), or an object (a coin we flip).

Some parameter or estimand of interest, say E [X1], or p(X2 = heads).

This is a fixed, but unknown property of the world.

Can’t measure everyone (too expensive), can’t flip coin forever (too
long), but can get a representative subset called a sample.

Find an algorithm called an estimator to approximate parameter via
an estimate.

An estimate is a function of the sample, and so is a random variable,
because the sample is random.
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Parameters, Estimators, and Estimates

Graphical View

distribution
p(x1, x2, x3, x4)

~X =

x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44
. . . . . . . . . . . .

sample

estimand
θ = E [x1]

estimate

θ̂(~X ) = 1
n

∑n
i=1 xi1

estimator

Will represent the sample as a matrix, will often write as ~X or ~Xn×k .
Columns: random variables in p, rows: draws from p.
Will assume all rows are independent, identically distributed.
Think coin flips.
If we have time, may depart from this at the end of class.
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Parameters, Estimators, and Estimates

What We Want From Estimators

Accuracy: if E [X1] = 5, want estimators to produce numbers that are
roughly 5, not roughly −100.

Dart analogy: want to hit around the bullseye on average.

Precision: estimator output should not wildly fluctuate with different
inputs.

Dart analogy: want consistency, so our darts cluster around a small
area, even if our aim is ”off.”

Robustness: if we have weird or missing values in sample, or
assumptions are wrong, don’t output crazy things.

Reliability: if we give estimator a range of different inputs, it still
produces output reasonably close to correct most of the time.

Trade offs involved here, can’t have everything!
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Parameters, Estimators, and Estimates

Accuracy (Lack Of Bias)

Want to quantify bias: 0 means “no bias.”

Should compare θ and θ̂(~X ).

But there is no single θ̂(~X )! Estimator maps different samples ~X to
different θ̂(~X ).

But we can average across possible samples, to get:

θ − E [θ̂(~X )] = θ −
∑
~x

(θ̂(~X )) · p(~X ).

Estimator is unbiased if θ − E [θ̂(~X )] = 0.

Note: for any specific ~X , θ − θ̂(~X ) (called the error) may not be 0!

Causal inference is about dealing with selection and confounding
biases (much more on this later).
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Parameters, Estimators, and Estimates

Precision (Lack Of Variance)

Will quantify precision as variance of θ̂(~X ) (remember θ̂(~X ) is a
random variable):

Var(θ̂(~X )) = E [(θ̂(~X )− E [θ̂(~X )])2].

As before E [.] is with respect to p(~x).

Note: true θ appears nowhere here.

We measure how tightly clustered our “darts” are, not how close to
the bullseye we are.
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Parameters, Estimators, and Estimates

Quantifying Precision And Accuracy Together

A way to measure accuracy and precision is mean squared error:

MSE = E [(θ − θ̂(~X ))2]

Literally: the mean (E [.]) of the error squared.

Important decomposition: MSE = bias2 + variance:

E [(θ − θ̂(~X ))2] = (θ − E [θ̂(~X )])2 + E [(θ̂(~X )− E [θ̂(~X )])2]

An inaccurate but precise estimator could have smaller MSE than an
accurate but imprecise estimator.

If the estimator is unbiased, MSE = Var(θ̂(~X )).
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Parameters, Estimators, and Estimates

A Stronger Type Of Accuracy

Unbiasedness is a fairly weak property.

Say we want to estimate probability of the coin landing heads from an
odd number of coin tosses.

If the coin is fair, an estimator that gives 1 if #heads > #tails, and 0
if #heads < #tails is unbiased, since

For any given sequence of flips, the estimator is nowhere close!

Want a property that states that as we get more and more data, we
get closer and closer to true θ.
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Parameters, Estimators, and Estimates

Consistency

“More and more data” means a sequence of samples with more and
more rows.

Each sample has its own estimator, so we are really talking about a
sequence of estimators.

Such a sequence is consistent if as sample size grows to infinity, we
are close to true θ with probability approaching 1.

Formally, for any tiny ε,

lim
n→∞

p(|θ̂(~Xn×k)− θ| < ε) = 1.
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Parameters, Estimators, and Estimates

Consistency (cont.)

Consistency is often a desirable property, but sometimes is sacrificed
for other properties.

Important: consistency is about long term behavior with lots of
samples.

A rule for constructing a consistent sequence of estimators is not
guaranteed to behave well for a particular finite sample size.

Analogy for computer scientists: an algorithm may run in polynomial
time (in P), but may have large “constant factors” that make it
relatively inefficient at a particular input size.
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Derivatives, Data, Likelihood

Constructing Estimators (Example)

Call a coin random variable X .

Our data is 8 coin flips from X (1 = heads, 0 = tails):

~X8×1 = (1, 0, 0, 0, 1, 1, 0, 0)T .

Want to model p(X = 1) as q, and p(X = 0) as 1− q. Then

p(X = x) = qx · (1− q)1−x

This is called the Bernoulli distribution (p(X ) ∼ Bern(q)).

Intuitively, we should estimate q̂ = 3/8 from this data.

How to think about this in general?
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Derivatives, Data, Likelihood

General Setup For Learning From Data

Want to pick a “good” parameter value.

We want a function that will tell us, for any parameter value, how
surprised we should be to see the data.

If surprised, parameter seems like a bad choice.

If not surprised, parameter seems like a good choice.

Recall: rows in a sample are independent, so define this measure of
surprise:

L(~X8×1; q) is called the likelihood function.

Want to pick q to maximize L(~X8×1; q), or “minimize surprise.”

How to do this? Differentiate L with respect to q, set to 0.
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Derivatives, Data, Likelihood

The Likelihood Function And Learning Parameters

Have a sample ~Xn×k , rows are data points, columns are features.

Random variables X1, . . .Xk .

Statistical model: {p(X1,X2, . . .Xk ;π) | some π} relating random
variables.

π is an unknown set of parameters.

Assume data is independent, samples from some p(X1,X2, . . .Xk ;π)
in the set.

Want to learn what we can about π.

If |π| is finite and independent of n, model is parametric.

If |π| is a function that scales with n, model is non-parametric.

A part of p may be parametric, and a part non-parametric, in which
case the model is semi-parametric.

Statistical models are called probabilistic hypothesis classes in ML.
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Derivatives, Data, Likelihood

Maximizing Likelihood

Define

L(~Xn×k ;π) =
n∏

i=1

p(X1 = xi1, . . .Xk = xik ;π)

Will often be easier to work with logL (log-likelihood).

Does not affect maximization but easier to work with.

Solve for
∂ logL(~Xn×k ;π)

∂π
= 0.

Lots of issues here.
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Derivatives, Data, Likelihood

Issues with Maximizing Likelihood

Equations of this type are known as estimating equations:

∂ logL(Dn×k ;π)

∂π
= 0.

Problem 1: may not be solvable in closed form (transcendental
equation).

Iterative algorithms:

Grid search
Local search

Problem 2: derivative at 0 might give local maximum. Or saddle
point. Or minimum.

Important class of functions where this does not happen.
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Derivatives, Data, Likelihood

Convex Functions

Single global minimum if (− logL) is convex in π. A function f (x) is
convex if

f (t · x1 + (1− t) · x2) ≤ t · f (x1) + (1− t) · f (x2).

If function is convex, local search will often work very well (can we
think of an example where it will not?)

If the problem is non-convex, life gets hard...

Function optimization is an interesting area, will leave aside for now.

Another problem with maximizing likelihood, to be discussed later.
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The Bernoulli Model

The Bernoulli (Biased Coin Flip) Model

Data: a sequence of n binary outcomes ~Xn×1 (“biased coin flips”).

Model:
p(X = x) = qx · (1− q)1−x .

Likelihood:

L(~Xn×1; {q}) =
n∏

i=1

qxi1(1− q)1−xi1 .

Log likelihood:

logL(~Xn×1; {q}) =
n∑

i=1

xi1 log q + (1− xi1) log(1− q).

Maximum likelihood estimator for q: q̂(~Xn×1) = 1
n

∑n
i=1 xi1.
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The Gaussian Model

The Gaussian (Normal) Density

One of the most important densities in statistics:

f (x ; {µ, σ2}) = N (µ, σ2) =
1√

2σ2π
exp

{
−(x − µ)2

2σ2

}
.

If X ∼ N (µ, σ2), E [X ] = µ, Var [X ] = σ2.

Lots of continuous valued variables in Nature are approximately
Gaussian.

Why? Central limit theorem.

Averages (and sums) of lots of random variables (under some
conditions) will be Gaussian.

Height, test performance, etc.

Important in statistical theory, will return to this later.
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The Gaussian Model

The Gaussian Model

Data: a sequence of n realizations of X , written as ~Xn×1.

Model:

f (X = x) =
1√

2σ2π
exp

{
− (x − µ)2

2σ2

}
Likelihood (density as “measure of surprise”):

L(~Xn×1; {µ, σ2}) =
n∏

i=1

1√
2σ2π

exp

{
− (xi1 − µ)2

2σ2

}
Log likelihood:

logL(~Xn×1; {µ, σ2}) =
n∑

i=1

{
− (xi1 − µ)2

2σ2

}
− n log

√
2σ2π.

Maximum likelihood estimators for µ, σ2:
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The Gaussian Model
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1

n

n∑
i=1

xi1; σ̂2(~Xn×1) =
1

n

n∑
i=1

(xi1 − µ̂(~Xn×1))2
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The Gaussian Model

Next time: Linear and Logistic Regression
Models
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