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History Undirected Models

Graphs And Probability

Probability is great for reasoning consistently about uncertainty
(unlike rule-based expert systems).

However, probability is

Hard to think about because it’s tables of numbers, or hard to visualize
density functions.
Hard to reason about efficiently.

Humans are bad at tables of numbers or high dimensional curves.

Humans are great at pictures!

Graphical models use graphs to represent independence/irrelevance in
probability distributions.

Independence will help with efficiency, too!

Will discuss directed graph models in this class.
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History Undirected Models

History: Undirected Models (Ising)

Ernst Ising developed first undirected graph model for spin states in
metals (1910).

Iron itoms have two states: “up” and “down.”

Magnetized iron has most states pointing in the same direction.

Atoms want to be like their neighbors.

Ising’s idea:

Vertices are atoms, edges connect neighbors. (2D/3D lattices are much
harder).
Corresponding probability model: Atom state only depends on
immediate neighbors.
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History Undirected Models

Markov Random Fields

Undirected models are called Markov random fields (MRFs) today.

Give probability of any configuration in terms of “local factors.”

For Ising and a graph G,

φ are not probabilities but map values of Ai to numbers, represent
propensity of neighbors to have same value.

Z normalizes so product is 1. Related to amount of energy in system
for Ising.

High energy: atoms are disordered, p close to uniform.

Low energy: atoms arrange as all “up” or all “down”.

If this happens quickly as energy is lowered, known as a phase
transition.

Model motivated originally by study of phase transitions.
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History Undirected Models

Markov Random Fields

Main ideas for graphical models already present in Ising’s model.

A graph G( ~V ) encodes independences of a probability distribution
p( ~V ).
~V : vertices are variables.

If a vertex A is “blocked” from reaching a vertex B by a set of
vertices ~C in G, then A ⊥⊥ B | ~C holds in the distribution.

For an MRF: “blocked” means any path from A to B intersects ~C .

This relationship is called a Markov property (there are many).

Graph gives a factorization: p( ~V ) as a product of small pieces.

Factorization and Markov properties equivalent views of model.

Ising example
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History Undirected Models

Markov Random Fields Today

Computer vision (vertices are pixels or features).

Social network analysis.

Association models for genomics data.

Physics materials models, of course.

Spacial statistics.

Used in machine learning for efficient inference (junction trees, factor
graphs, etc.)
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History Directed Models

History: Directed Models (Wright)

Sewall Wright developed the first directed models for pedigree
analysis for animals (1920s).

Animals inherit traits from parents, probabilistically (see Mendel’s
Laws).

Question, formalize “degree of inbreeding“:

How inbred are x5 and x6?
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History Directed Models

Wright’s Path Analysis

Wright’s model related variable Y and all X such that X→Y exists in
graph G, using a linear regression:

Y = w0 +
∑
Xi

wi · Xi + εY

Coefficient wi associated with Xi→Y in the graph.

Allow correlations between noise terms: cov(εYi
, εYj

) 6= 0 (associated
with Yi↔Yj).

Inbreeding coefficient of X5,X6 as a measure of dependence in model.

Add contributions from relevant paths in graph. Tracing relevant
paths:

Contribution of a path: multiply all coefficients along path.
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History Directed Models

Path Analysis Example

How inbred are x5 and x6?

1
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γ

Can trace back then forward, but not forward and then back.

Pass through each variable only once.

At most one bidirected edge per path.

Relevant paths: 5←3←1↔2→6, 5←3←2→6.

Inbreeding coefficient f = β · ε · δ · γ + β · α · γ.
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History Directed Models

Structural Equation Models (SEMs)

For Wright, → were causal: parent traits cause child trains due to
how gamete reproduction works.

Model easy to fit without ↔ (will discuss later).

With ↔, can use iterative methods (Drton et al).

Path analysis came to be heavily used in social sciences and
economics, due to (Haavelmo, 1943), and computer programs to do
iterative fitting (1960s).

Applied to lots of areas, many not causal anymore.

Loose terminology, eventually causal interpetation was abandoned.

Still used today in the original form. Will talk about non-parametric
version later.
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History Directed Models

Hidden Markov Models

Developed for speech processing in the 1960s (Stratonovich, Baum,
etc.).

Discrete hidden state of known complexity evolves in discrete time,
we see a noisy version:

A1 A2 A3
. . .

B1 B2 B3

Model p(Ai | Ai−1), and p(Bi | Ai ) (tables of numbers).

Example: A1,A2, . . . are the words said, B1,B2, . . . is the speech
sound wave.

Interested in probable value assignments to A1,A2, . . . conditional on
b1, b2, . . ..

Efficient algorithms (Viterbi) for this.
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History Directed Models

The Rise of Bayesian Networks

Other special cases exist (Kalman filters, 1960s).

Fusion began in 1980s after Pearl’s Probabilistic Reasoning in
Intelligent Systems book.

Directed models are very heavily used in ML, statistics, public health,
social sciences.

Many applications.

Unlike MRFs, models could be either statistical or causal.

Will talk about statistical models today.
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Bayesian Networks

Graph Terms

1

3

2

5

4

6

7

paG(.): parents, chG(.): children, anG(.): ancestors, deG(.):
descendants, sbG(.): siblings.

1→3: 1 ∈ paG(3), 3 ∈ chG(1).

1→3→5→6: 1 ∈ anG(6), 6 ∈ deG(1).

1↔2: 1 ∈ sbG(2).

Districts: connected sets via ↔: {1, 2}, {4, 6, 7}, {3}, {5}.
6 ∈ disG(4).
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Bayesian Networks

Bayesian Networks

Bayesian networks link a probability distribution and a directed acyclic
graph.

Directed: only → edges.

Acyclic: if X ∈ deG(Y ), Y 6∈ chG(X ).

(Slightly imprecise term, but entrenched now).

Big point of confusion:

Three definitions (all involve the graph):
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graph.

Directed: only → edges.

Acyclic: if X ∈ deG(Y ), Y 6∈ chG(X ).

(Slightly imprecise term, but entrenched now).

Big point of confusion:

In a Bayesian network graph, → are not causal!
Three definitions (all involve the graph):

Factorization (probability distribution as a set of small factors).
Local Markov property (a small set of independence constraints).
Global Markov property (all independence constraints in the model).
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Bayesian Networks

Factorization

Factorization has a term for a conditional distribution of a variable
given its parents.

A

B

D

C

E

p(A,B,C ,D,E ) = p(E | D)p(D | B,C )p(C | A)p(B | A)p(A).

Exactly what we did for SEMs and HMMs!

If the graph has few edges, need few parameters.

In a binary model need 25 − 1 = 31 to specify LHS, but only
21 + 22 + 21 + 21 + 1 = 11 to specify RHS.
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Bayesian Networks

Local Markov Property

Graph implies a small list of independences that imply the rest.

Every X is independent of non-parental non-descendants, conditional
on parents.

(C ⊥⊥ B | A), (D ⊥⊥ A | B,C ), (E ⊥⊥ A,B,C | D).

Often expressed causal intuition: for any X only “direct causes”
matter to specify it.

Why is this not entirely right?
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Bayesian Networks

Observational Equivalence

Consider the following two DAGs:

A B C A B C

Local Markov property gives same independence: (A ⊥⊥ C | B).

In fact, the only independence in this model.

If one graph is causal, the other isn’t...

These graphs are called observationally equivalent.

This is going to create a lot of problems for us later.
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Bayesian Networks

Global Markov Property

Local Markov property specifies only a small set of ⊥⊥.

Can we read independences directly from graph, e.g. is A independent
of E given C ,D?

A

B

D

C

E

In MRFs, to check if A ⊥⊥ B | ~C checked if ~C blocked any path from
A to B.

Will do the same here, but defining “blocked” will be harder.
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Bayesian Networks

Triplets On A Path

In a directed graph, we have one of 4 possibilities for 3 consecutive
vertices in a path:

A B C

A B C

A B C

A B C

First two are directed, the third is called a collider, and the fourth is
called a split or a fork.

Need to think about how influence behaves along these.
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Bayesian Networks

Directed Triplet

Will have two cases, B is unobserved, and B is observed (conditioned
on).

A B CUnobserved case: A 6⊥⊥ C

Wrong intuition: A influences B, and B influences C , therefore A
influences C .

Causal intuition: if B is a noisy version of A and C is a noisy version
of B, then C is a noisy version of A. Example?

Noncausal intuition: if arrows don’t meet, edges act undirected.

Acts like undirected path blocking.

“Wiggles” in A translate into “wiggles” in C via “wiggles” B.

If B is conditioned to a value, this stops happening. Example?
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Bayesian Networks

Split Triplet

Will have two cases, as before.

A B CUnobserved case: A 6⊥⊥ C

Wrong intuition: A influences B, and B influences C , therefore A
influences C .

Causal intuition: if A and C share a common cause, they become
dependent. Example?

Noncausal intuition: if arrows don’t meet, edges act undirected.

Acts like undirected path blocking.

“Wiggles” in A translate into “wiggles” in C via “wiggles” B.

If B is conditioned to a value, this stops happening. Example?
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Bayesian Networks

Collider Triplet

Will have two cases, as before.

A B CUnobserved case: A ⊥⊥ C

Causal intuition: two independent causes of an effect. Example?

Causal intuition: knowing a shared effect create dependence between
causes (NBA example).

Hard to think of a non-causal intuition, colliders often arise in causal
systems. Can we think of a non-causal example?

Berkson’s bias/paradox: if edges meet, dependence behaves in the
opposite way from undirected.

A can depend on B, and B on C , but A and C could be independent.

Conditioning on B can create dependence, not just remove it.

23 / 29



Bayesian Networks

Collider Triplet

Will have two cases, as before.

A B CUnobserved case: A ⊥⊥ C

Causal intuition: two independent causes of an effect. Example?

Causal intuition: knowing a shared effect create dependence between
causes (NBA example).

Hard to think of a non-causal intuition, colliders often arise in causal
systems. Can we think of a non-causal example?

Berkson’s bias/paradox: if edges meet, dependence behaves in the
opposite way from undirected.

A can depend on B, and B on C , but A and C could be independent.

Conditioning on B can create dependence, not just remove it.

23 / 29



Bayesian Networks

Collider Triplet

Will have two cases, as before.

A B CUnobserved case: A ⊥⊥ C

Causal intuition: two independent causes of an effect. Example?

A B CObserved case: A 6⊥⊥ C | B

Causal intuition: knowing a shared effect create dependence between
causes (NBA example).

Hard to think of a non-causal intuition, colliders often arise in causal
systems. Can we think of a non-causal example?

Berkson’s bias/paradox: if edges meet, dependence behaves in the
opposite way from undirected.

A can depend on B, and B on C , but A and C could be independent.

Conditioning on B can create dependence, not just remove it.

23 / 29



Bayesian Networks

Collider Triplet

Will have two cases, as before.

A B CUnobserved case: A ⊥⊥ C

Causal intuition: two independent causes of an effect. Example?

A B CObserved case: A 6⊥⊥ C | B

Causal intuition: knowing a shared effect create dependence between
causes (NBA example).

Hard to think of a non-causal intuition, colliders often arise in causal
systems. Can we think of a non-causal example?

Berkson’s bias/paradox: if edges meet, dependence behaves in the
opposite way from undirected.

A can depend on B, and B on C , but A and C could be independent.

Conditioning on B can create dependence, not just remove it.

23 / 29



Bayesian Networks

Collider Triplet

Will have two cases, as before.

A B CUnobserved case: A ⊥⊥ C

Causal intuition: two independent causes of an effect. Example?

A B CObserved case: A 6⊥⊥ C | B

Causal intuition: knowing a shared effect create dependence between
causes (NBA example).

Hard to think of a non-causal intuition, colliders often arise in causal
systems. Can we think of a non-causal example?

Berkson’s bias/paradox: if edges meet, dependence behaves in the
opposite way from undirected.

A can depend on B, and B on C , but A and C could be independent.

Conditioning on B can create dependence, not just remove it.

23 / 29



Bayesian Networks

Important Note On Colliders

Do not have to condition on B, can condition on descendant:

A B1 C

B2

. . .

Bk

Observed case: A 6⊥⊥ C | Bk

Can just extend the NBA example to observed consequences of being
in the NBA.
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Bayesian Networks

From Path Blocking To d-separation

Will say a path from A to B is blocked by ~C if there is a blocking
triplet on the path.

Intuition: dependence is water flow, paths are pipes. A single block is
enough.

A and B is said to be d-separated given ~C if all paths from A to B
are blocked by ~C in this way. Examples:

A

B

D

C

E

A ⊥⊥ E | C?

C ⊥⊥ B | A?

C ⊥⊥ B | E ,A?
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Will say a path from A to B is blocked by ~C if there is a blocking
triplet on the path.

Intuition: dependence is water flow, paths are pipes. A single block is
enough.

A and B is said to be d-separated given ~C if all paths from A to B
are blocked by ~C in this way. Examples:

A

B

D

C

E

A ⊥⊥ E | C? No: A→B→D→E not blocked.

C ⊥⊥ B | A? Yes: C←A→B and C→D←B blocked.

C ⊥⊥ B | E ,A? No: C→D←B open because of E .
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Global Markov Property

Will write (A ⊥⊥d B | ~C )G to denote “A is d-separated from B given
~C in G.”

Extends to sets: (~A ⊥⊥d
~B | ~C )G if for all A ∈ ~A,B ∈ ~B,

(A ⊥⊥d B | ~C )G .

Global Markov property for a Bayesian network model with DAG
G( ~V ):

(~A ⊥⊥d
~B | ~C )G( ~V )

⇒ (~A ⊥⊥ ~B | ~C )
p( ~V )

.

One way implication! Could have extra independences in p( ~V ).

Example (3-chain).

Distributions where implication is two way are very special and useful.

Will have much to say about them later.
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Equivalent Definitions

Important theorem:

Theorem (Verma and Pearl)

Given a DAG G( ~V ), a distribution p( ~V ) factorizes according to G if and
only if it obeys the local Markov property according to G if and only if it
obeys the global Markov property according to G.

Why is this true?

Global ⇒ local is easy (properties of d-separation).

Local ⇒ factorization is easy (chain rule using topological order, and
use local).

Factorization ⇒ global is hard (easiest proof in Lauritzen’s Graphical
Models book).
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Statistical Vs Causal Models

A statistical model is formally a set of distributions. For example:{
p( ~V )

∣∣∣(∀~A∪̇~B∪̇ ~C ∈ ~V )(~A ⊥⊥d
~B | ~C )G ⇒ (~A ⊥⊥ ~B | ~C )

p( ~V )

}
This is talking about p( ~V ), the observed data distribution.

Nothing about potential experiments.

Nothing about causality.

May use causal intuitions, but these are informal.

Need to represent “directly causes” formally.

Next: causal models, as sets of distributions on counterfactual and
factual random variables.
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Next time: Causal Models Of A DAG.
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