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Review

Structure Learning Algorithms

Assume there is a graph G( ~V ) with k vertices, and a distribution
p( ~V ) factorizing relative to G.

INPUT: a dataset ~Xn×k (assumed sampled independently from p( ~V )).

OUTPUT: a set of graphs consistent with what we know about ~Xn×k
(hopefully including G).

This is an unsupervised learning problem.

We want to find a sensible causal description of the data.

Lots of ways of doing this!
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Review

Types Of Structure Learning

Constraint based learning (today):

Find constraints that hold in ~Xn×k .
Rule out graphs inconsistent with constraints we found.
Return what’s left.

Score based learning (next time):
Assign a score to any graphical model.
Scores typically reward fit, but also regularize (want a concise
description of the data).

Do search (model selection) for high scoring models given ~Xn×k .

These are asymptotically equivalent, but behave differently in finite
samples.

“Parametric” structure learning:
Make strong additional assumptions on p( ~V ).
Orient edges using those assumptions.
Examples: additive noise models, structure learning as classification,
etc.
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Score Based Structure Learning

Intuition Behind Score Based Learning

Assume the true graph is on the left, proposed graph is on the right.

A B C A B C

In the true graph, A ⊥⊥ C but (under faithfulness) A 6⊥⊥ C | B.

In the proposed graph A ⊥⊥ C | B, but (under faithfulness) A 6⊥⊥ C .

In the data, will we likely see A ⊥⊥ C , and (under faithfulness)
A 6⊥⊥ C | B.

Conclusion: proposed graph does not fit the data well.

How do we assess data fit?
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Score Based Structure Learning

Log Likelihood For DAG Models

Recall the DAG factorization:

p( ~V ) =
∏
Vi∈ ~V

p(Vi | paG(Vi )).

Assume (discriminative) models p(Vi | paG(Vi );αi ) (regression, etc.)

for each Vi ∈ ~V .

For a dataset ~Dn×k , and ~α = {αi | Vi ∈ ~V }, the log likelihood is

logL ~V
(~α; ~D) =

n∑
j=1

k∑
i=1

log p(V j
i | pajG(Vi );αi ).

Can fit each αi separately on part of data that involves
p(Vi | paG(Vi )).

This is called a decomposable likelihood. Already saw this with
sequential g-formula.
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Score Based Structure Learning

Likelihood For Model Fit

In our running example, the true and proposed graph log likelihoods
are

A B C A B C

Lleft
~V

(α; ~D) =
n∑

j=1

log p(Aj ;βA) + log p(B j | Aj ,C j ;βB) + log p(C j ;βC )

Lright
~V

(α; ~D) =
n∑

j=1

log p(Aj | B j ;αA) + log p(B j | C j ;αB) + log p(C j ;αC )

To compare these two models, pick ~α, ~β to “minimize surprise”
(maximize log likelihood), compare results.

True graph will have a higher likelihood value.

Any problems with doing this?
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Score Based Structure Learning

Problems With Likelihood As A Score

True graph on the left, a different proposed graph on the right.

A B C A B C

Respective likelihoods are:

Lleft
~V

(α; ~D) =
n∑

j=1

log p(Aj ;βA) + log p(B j | Aj ,C j ;βB) + log p(C j ;βC )

Lright
~V

(α; ~D) =
n∑

j=1

log p(Aj | B j ,C j ;αA) + log p(B j | C j ;αB) + log p(C j ;αC )

Which likelihood fits the data better?

Lright~V
(α; ~D). Why? The left model is {p(A,B,C ) | A ⊥⊥ C}. The

right model is { all p(A,B,C )}.
Left model is a submodel (subset) of the right. Subsets are strictly
more restrictive, so will always fit data less well.
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Score Based Structure Learning

Likelihood And Overfitting

If we use the likelihood to score models, the highest scoring model is
always a complete graph.

This is silly!

Related to overfitting in machine learning.

If the true graph is sparse, a complete graph has too many
parameters.

Fits very well, but does not capture the true structure of the problem.

How to address this?

Want to reward fit, but also punish too many parameters.

Lots of ways to do this.
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Score Based Structure Learning

The Bayesian Information Criterion (BIC) Score

Will discuss one particular score – the Bayesian Information Criterion
(BIC).

A number assigned to a DAG + parameterization ~α = {αi | Vi ∈ ~V }
for all Markov factors:

BIC = −2 · logL ~V
(~α, ~Dn×k) + m · log(n),

where m is the number of parameters.

Minus sign means “low is good.” Prefer models with low scores.

Can be viewed as a kind of regularization (over graph structures).
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Score Based Structure Learning

Consistency of BIC

Why use BIC to select models?

In the limit of n→∞, BIC does “sensible things.” What does this
mean?

Say G∗ is the true DAG.

Property 1
Say G1 is an edge supergraph of G∗ and G2 is not.
Then G∗ (true model) is a submodel of G1 model, but not a submodel
of G2 model. (Why?)
Then BIC gives a better score to G1 than G2.

Property 2
Say G1,G2 are both edges supergraphs of G∗. But G1 has fewer
parameter than G2.
Then BIC gives a better score to G1 than G2.

So if we choose correct parameter families for p(Vi | paG(Vi );αi ),
BIC will find the true graph (up to equivalence!) eventually.
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Score Based Structure Learning

Score Based Search In Asymptopia

With infinite samples, and infinite computing resources, and the right
Markov factor models, life is good!

List all DAGs on k vertices.

Compute BIC score for each DAG.

Pick the best scoring DAGs – these will be the equivalence class of
the truth, by consistency of BIC.

Issues with this?

Exponentially many DAGs. Possibly intractable likelihoods for larger
DAGs.

Problem is NP-hard in general, so must make assumptions.

As with PC, assume the true DAG G∗ is sparse.

Search space for all sparse DAGs is still large... so try local search.
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Score Based Structure Learning

How Does Local Search Work?

Local search arose in making game-playing programs (Samuel’s
checkers program is an early example).

You have a big undirected graph (search space)

Vertices are states (game positions)

Edges are neighboring states (game position reachable from current
one by one move).

Each state has a value. Want explore space, and find a good one.

Computers now play chess better than any human due to
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checkers program is an early example).

You have a big undirected graph (search space)

Vertices are states (game positions)

Edges are neighboring states (game position reachable from current
one by one move).

Each state has a value. Want explore space, and find a good one.

Computers now play chess better than any human due to

Discrete search (plus tricks...)
Big opening database.
Big endgame database.
Clever ways of assigning value to positions.
Powerful computers to search quickly.
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Score Based Structure Learning

Local Search Of DAG Structures

For us, search space states are all DAGs.

Want to define “local moves” to be able to reach any DAG from any
other DAG.

Want a clever algorithm to find the best state (DAG) using a
(polynomial) sequence of moves.

Can we think of a problem with this set up?

DAGs can be observationally equivalent.

Many equivalent DAGs differ by only one edge.

Wasteful to traverse state spaces we know are the same.

Can we define states and “local moves” on equivalence classes?

Yes! Chickering’s GES (Greedy Equivalence Search) algorithm.
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Score Based Structure Learning

The Greedy Equivalence Search (GES) Algorithm

Start with a graph with no edges.

Repeat until no score improvement

Pick the best new class after adding a single edge to current class.
Note: adding an edge to a class moves to different classes depending
on starting DAG.
Example: if we add C → B to {A→ B C ;A← B C}, we either move
to {A→ B ← C} or {A← B ← C ;A← B → C ;A→ B → C}.

Repeat until no score improvement

Pick the best new class after removing a single edge to current class.
Note: removing an edge to a class moves to different classes depending
on starting DAG.

Return current class.
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Score Based Structure Learning

GES Completeness

Surprisingly, this works (in the limit):

Theorem (Chickering, 2002)

Under faithfulness, and in the limit of n→∞, GES correctly identifies the
true equivalence class.
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Score Based Structure Learning

Remaining Issues

BIC and GES results are large sample results.

With finite data, all bets are off.

Local search still intractable if the score cannot be evaluated in
polynomial time.

If we get models p(Vi | paG(Vi );αi ) wrong, all bets are off.

Cannot use this in p >> n problems (5000 variables, 100 samples).

In practice, structure learning is often useful in genomics and social
networks, which are often p >> n settings.

Need sparsity ideas to make progress. Lots of literature, leaving aside
for lack of time.

Assumed no hidden variables (which is silly).

We will talk about the hidden variable case in the Spring class!
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Score Based Structure Learning

Next time: Missing Data.
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