
Causal Inference
CS 477-677

Instrumental Variables

Ilya Shpitser

1 / 20



Outline

1 The Identification Problem

2 Instrumental Variables

3 Instrumental Variable Identification

4 Estimation Strategy

5 Bounding the Causal Effect

2 / 20



The Identification Problem

Last Time

Randomize (Daniel 1-15, Lind, Pierce, Neyman, Fisher):

A

U

Y

Observe confounders/stratify, last time:

A

U

Y

Instrumental variable + assumptions (P. Wright, 1928), today:

Z A

U

Y

Find a strong independent mediator (Pearl), later:

A W

U

Y
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The Identification Problem

Why Do We Need A Trick?

Wait a second... this is a latent variable model:

A

U

Y

p(Y ,A) =
∑
u

p(Y | A,U)p(A | U)p(U)

Why can we not do this:

Posit a model p(Y ,A,U;α).
Use a latent variable fitting algorithm (expectation maximization) to
find α̂.
Use adjustment formula with resulting parameters:

Unfortunately, this doesn’t work.
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The Identification Problem

The Identification Problem

Observed data on ~X , observed data model p(~X ;α).

“Larger model” of interest: p(~X , ~W ;β).

Could be: latent variable model, causal model, etc.

Larger model induces observed data model:

p(~X ;α) = f (p(~X , ~W ;β)).

Interested in parameter βi in β.

βi is said to be identified from observed data if for any p(~X , ~W ;β) in
the model, βi is a function of p(~X ;α).

In other words, we want to “invert” f :

βi = g(p(~X ;α)).

Abstract, so let’s do an example.
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The Identification Problem

Identification Example: Ignorable Causal Model

Observed data on A,Y , observed data model p(Y ,A;α).

Larger model: causal model on p(Y (1),Y (0),A;β).

Remember, we don’t get to see all of the larger model, but have
assumptions to help us:

Y (A) = Y

{Y (1),Y (0)} ⊥⊥ A

Parameter of interest βi = E [Y (1)]− E [Y (0)].

Parameter identified:

If observed data model is a linear regression: Y = w0 + w1A + ε,
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The Identification Problem

Identification And Estimation

Formally, have to make sure parameter is identified before estimating.

Otherwise, parameter is not a unique function of observed data, so
estimation problem is not well-posed.

In classical statistics, parameters are often identified, so the issue is
not explicitly discussed.

Sometimes parameters are not identified.

Classical example in machine learning: labels in mixture models.

That type of non-identification is benign (no real effect on decision
making).

In causal inference, failure of identification is common and very
important!
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The Identification Problem

Example of Unidentified Parameter

Observed data on A,Y , observed data model p(Y ,A;α).

Larger model: causal model on p(Y (1),Y (0),A,U;β).

As before, we don’t get to see all of the larger model

A

U

Y

Consistency holds, ignorability does not:

Y (A) = Y

{Y (1),Y (0)} 6⊥⊥ A

{Y (1),Y (0)} ⊥⊥ A | U

Parameter of interest (as before): βi = E [Y (1)]− E [Y (0)].

βi is not identified in this model. Why?
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The Identification Problem

Non-identification (Counterexample)

Will construct two models that agree on p(A,Y ), disagree on
p(Y (a)), for:

A

U

Y

Both models: U drawn from a fair coin, A = U.

Model 1: Y = A xor U +N (0, 1). Model 2: Y = N (0, 1).

Observed data (both models): A and Y are independent, A is a fair
coin, Y is a standard normal N (0, 1).

Model 1: Y (1) ∼ N (0, 1) + fair coin flip,
Model 2: Y (1) ∼ N (0, 1).

Lesson: no latent variable modeling approach will get you Y (a).

Y (a) is not a function of p(Y ,A), and thus a model∑
u p(Y ,A,U = u;α) will not help.
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Instrumental Variables

Why Do Instrumental Variables Help?

If Z ⊥⊥ A, we are back to previous problem:

Z A

U

Y

Imagine Z was a really strong predictor of A:

Z A

U

Y

Then confounding goes away, and p(Y (a)) = p(Y | A = a).

What if we are somewhere in the middle?
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Instrumental Variables

Instrumental Variable Conditions

Already saw picture of the IV model.

Let’s state assumptions on potential outcomes.

Relevance: Z is associated with A: Z 6⊥⊥ A.
Marginal ignorability: Y (a, z) ⊥⊥ Z .
Exclusion restriction: Z does not cause Y directly Y (a, z) = Y (a, z ′)
for all a, z , z ′.

Want to randomize A, but cannot. Can randomize Z related to A in
the appropriate way.

Examples: genes (Mendelian randomization), intent vs
implementation, regression discontinuity.
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Instrumental Variable Identification

IV In Linear Models

Assume linear regressions: for A and Y :

A = v0 + v1 · Z + ε1

Y = u0 + u1 · A + ε2

Y = w0 + w1 · Z + ε3

Claim:

E [Y (1)]− E [Y (0)] =
E [Y (z = 1)]− E [Y (z = 0)]

E [A(z = 1)]− E [A(z = 0)]
= w1/v1.

Intuition: path analysis (Sewall Wright).

12 / 20



Instrumental Variable Identification

IV In Linear Models

Assume linear regressions: for A and Y :

A = v0 + v1 · Z + ε1

Y = u0 + u1 · A + ε2

Y = w0 + w1 · Z + ε3

Claim:

E [Y (1)]− E [Y (0)] =
E [Y (z = 1)]− E [Y (z = 0)]

E [A(z = 1)]− E [A(z = 0)]
= w1/v1.

Intuition: path analysis (Sewall Wright).

On the board

12 / 20



Instrumental Variable Identification

Path Analysis

Imagine linear models for a chain:

A = v0 + v1 · Z + ε1

Y = u0 + u1 · A + ε2

Y = w0 + w1 · Z + ε3

Z A Y

E [Y (z = 1)]−E [Y (z = 0)] = u0 +u1 ·(v0 +v1)−u0−u1 ·(v0) = u1 ·v1.

E [Y (a = 1)]− E [Y (a = 0)] = u0 + u1 − u0 − u1 · 0 = u1.

E [A(z = 1)]− E [A(z = 0)] = v0 + v1 − v0 − v1 · 0 = v1.

Since u1 = (u1 · v1)/v1, we have:

What if cov(ε1, ε2) 6= 0? Same derivation.
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Instrumental Variable Identification

Weakening Assumptions

If the model is entirely linear, can deal with unobserved U!

Very strong assumption.

Can we weaken this?

Yes, assume effect independent of Z given A.

Effect: E [Y (1)− Y (0)], so for a ∈ {0, 1},

E [Y (1)− Y (0)|Z = 1,A = a] = E [Y (1)− Y (0)|Z = 0,A = a].

Assumption implies usual identification:

E [Y (a = 1)]− E [Y (a = 0)] =
E [Y (z = 1)]− E [Y (z = 0)]

E [A(z = 1)]− E [A(z = 0)]
.

If interested, can read proof in technical point 16.3 in HR.
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Instrumental Variable Identification

IV Models and Non-Compliance

Non-compliance means units don’t do what they are told.

Common issue in certain randomized trials.

Arm assignment is randomized, but actual drugs aren’t always taken
in active arm.

Can view this as an IV model.

Confounding by “type of person”:

“Compliers”: A(z = 1) = 1,A(z = 0) = 0.
“Always takers”: A(z = 1) = A(z = 0) = 1.
“Never takers”: A(z = 1) = A(z = 0) = 0.
“Defiers”: A(z = 1) = 0, A(z = 0) = 1.

Often assume lack of defiers, a type of monotonicity assumption.
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Instrumental Variable Identification

Complier-Specific Causal Effect

If no defiers, can obtain
E [Y (1)− Y (0) | A(z = 1) = 1,A(z = 0) = 0] via usual estimator

E [Y (z = 1)]− E [Y (z = 0)]

E [A(z = 1)]− E [A(z = 0)]
.

Proof due to Imbens and Angrist (1994), see technical point 16.5 in
HR.
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Estimation Strategy

Two Stage Least Squares

Fit E [A | Z ;α] = α0 + α1 · Z by MLE to obtain α̂.

Fit E [Y | Z ;β] = β0 + β1E [Â | Z ; α̂] by MLE to obtain β̂. Then

β̂1 =
E [Y (z = 1)]− E [Y (z = 0)]

E [A(z = 1)]− E [A(z = 0)]
,

interpreted as before.

Same idea with a set of baseline variables ~X , just include them in
both models.
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Bounding the Causal Effect

When Identification Fails

Two big problems with IV:

Reliance on parametric assumptions (even with infinite data).
Output very sensitive to violations.

What can we do if assumptions are false?

Then ACE is not identified (not a function of observed data).

Then we are dead...

IV model is not an arbitrary model (does not contain all distributions
p(A,Y ,Z )).

That means we may be able to restrict ACE to a subset of possible
values.

In other words, try to find bounds for the ACE.
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Bounding the Causal Effect

IV Bounds (Balke And Pearl)

Let p00.0 = p(Y = 0,A = 0 | Z = 0) (same for other values).

Can show using computer algebra ACE lies within the following
polytope:



p00.0 + p11.1 − 1
p00.1 + p11.1 − 1
p11.0 + p00.1 − 1
p00.0 + p11.0 − 1

2p00.0 + p11.0 + p10.1 + p11.1 − 2
p00.0 + p11.0 + p00.1 + p01.1 − 2
p10.0 + p11.0 + p00.1 + p11.1 − 2
p00.0 + p01.0 + p00.1 + p11.1 − 2


≤ ACE ≤



1 − p10.0 − p01.1

1 − p01.0 − p10.1

1 − p01.0 − p10.0

1 − p01.1 − p10.1

2 − 2p01.0 − p10.0 − p10.1 − p11.1

2 − 2p01.0 − p10.0 − p00.1 − p01.1

2 − 2p10.0 − p11.0 − p01.1 − p10.1

2 − 2p00.0 − p01.0 − p01.1 − p10.1


Sometimes these are informative (e.g. bound ACE from 0).

Often very wide, however.

This is the best we can do non-parametrically.

Aside: this is related to the structure of latent variable models. More
later.
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Bounding the Causal Effect

Next time: Decomposing Causal Effects
Into Direct and Indirect Effects.
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