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Review

Review

Causal models of a (hidden variable) DAG.

Identification (the ID algorithm).

Mediation (splitting causal effects).

Estimation methods – IPW, parametric g-formula.

Counterfactual experiment contrasts.

Today: learning policies.
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Review

Conditional Ignorability (Review)

Treatment A (usually binary, but not necessary).

Outcome Y (discrete or continuous).

A vector of baseline factors ~X . Picture (observed and counterfactual):

A

X

Y A a Y (a)

X

Predicting what will happen to Y if A = a:

Average causal effect (ACE):
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Conditional Ignorability (Review)

Treatment A (usually binary, but not necessary).

Outcome Y (discrete or continuous).

A vector of baseline factors ~X . Picture (observed and counterfactual):

A

X

Y A a Y (a)

X

Predicting what will happen to Y if A = a:

p(Y (a)) =
∑
~x

p(Y | A = a, ~X = ~x)p(~X = ~x).

Average causal effect (ACE):

E [Y (1)]−E [Y (0)] =
∑
~x

{
E [Y | A = 1, ~X = ~x ]− E [Y | A = 0, ~X = ~x ]

}
p(~x).
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Counterfactual Reasoning For Learning Policies

Using Causality To Act

Say we learn E [Y (1)] > E [Y (0)].

On average, A = 1 helps (is “causally effective”).

A new patient comes in, should we set A = 1?

Not necesarily, a patient has particular characteristics ~X = ~x .

May well be E [Y (1) | ~x ] < E [Y (0) | ~x ] (Simpson’s reversal).

Want to pick a “good” mapping (policy) fA(~X ) from patient state
~X = ~x to action A = a.

In medical contexts, related to “personalized medicine.”

How do we formalize the problem?
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Counterfactual Reasoning For Learning Policies

Policies Under Conditional Ignorability

Given: p(Y ,A, ~X ), a policy class ~FA.

Assume Y (a) ⊥⊥ A | ~X .

Find fA(~X ) ∈ ~FA to optimize:

E [Y (A = fA(~X ))] ≡
∑
~x

E [Y (A = fA(~X = ~x))]p(~X = ~x)

Reads as: “expected outcome had we counterfactually set A
according to fA, with expectation taken over p(~X ).”

In other words, find

arg max
fA

E [Y (A = fA(~X ))].

A is no longer a constant, but a function of ~X !
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Counterfactual Reasoning For Learning Policies

Solving The Problem

Steps for ACE:

Identify counterfactual distribution as function of observed data
distribution.
Pick estimator (IPW, g-formula, 2SLS).
Pick statistical model (regression, Bayesian non-parametrics, neural
nets, etc.)
Fit pieces by MLE.
Combine in the “right way” for ACE estimate.
Report intervals with bootstrap or posterior quantiles.

Will do most of these steps for policies also.

Three complications:
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Solving The Problem

Steps for ACE:

Identify counterfactual distribution as function of observed data
distribution.
Pick estimator (IPW, g-formula, 2SLS).
Pick statistical model (regression, Bayesian non-parametrics, neural
nets, etc.)
Fit pieces by MLE.
Combine in the “right way” for ACE estimate.
Report intervals with bootstrap or posterior quantiles.

Will do most of these steps for policies also.

Three complications:

Identification is harder.
Have to search policy space ~FA.
More reliant on statistical model.
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Counterfactual Reasoning For Learning Policies

Identification

Assume we could identify p(Y (a) | ~X (a)) = p(Y (a) | ~X ).

E [Y (A = fA(~X ))] is a function of this and p(~X ).

p(~X ) is always identified.

Identifying p(Y (a)) is not enough! We need to consult ~X to
determine A.
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Counterfactual Reasoning For Learning Policies

Identification (Under Conditional Ignorability)

Since Y (a) ⊥⊥ A | ~X ,

p(Y (a) | ~X ) = p(Y (a) | A = a, ~X ) = p(Y | A = a, ~X ).

Thus, for any fA,

E [Y (A = fA(~X ))] =

(∑
~x

E [Y (A = fA(~x)) | ~X = ~x ]p(~X = ~x)

)

=

(∑
~x

E [Y | A = fA(~x), ~X = ~x ]p(~X = ~x)

)

fA is known, other terms are functions of the observed data
distribution.

9 / 25



Counterfactual Reasoning For Learning Policies

Estimation (Parametric g-formula)

Given n data points on A,Y , ~X , and assuming conditional ignorablity and
consistency:

1 Posit statistical model for E [Y | A, ~X ;α].

2 Fit model by MLE, yielding α̂.

3 For each fA ∈ ~FA, estimate E [Y (A = fA(~X ))] by:

1

n

(∑
i

E [Y | A = fA(~xi ), ~xi ; α̂]

)

4 Report best fA found.
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Counterfactual Reasoning For Learning Policies

Estimation (IPW)

Given n data points on A,Y , ~X , and assuming conditional ignorablity and
consistency:

1 Posit statistical model for p[A | ~X ;α].

2 Fit model by MLE, yielding α̂.

3 For each fA ∈ ~FA, estimate E [Y (A = fA(~X ))] by:

1

n

(∑
i

Yi
I(Ai = fA(~xi ))

p(Ai = fA(~xi ) | ~xi ; α̂)

)

4 Report best fA found.
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Counterfactual Reasoning For Learning Policies

Pros and Cons

Parametric g-formula is optimal if we know E [Y | A, ~X ]
(usual reasons).

If we don’t know E [Y | A, ~X ], can get bad policy due to bias.

IPW does not model Y , but high variance in policy estimate.

Usually pick ~FA to be small or easy to search.

Example: when to switch from first line a to second line a′ treatment
based on unknown threshold X ≥ α.
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Multistage Decision Problems

Multiple Treatments (Review)

Given the model

A0L0

H0

L1 A1 L2

H1 H2

Under sequential ignorability, we get:

p(L2(a0, a1)) =
∑
l0,l1

p(L2 | a1, l1, a0, l0)p(l1 | a0, l0)p(l0).

Can get contrasts E [L2(a0, a1)]− E [L2(a′0, a
′
1)] from this.

How do we generalize evaluating policies to this setting?
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Multistage Decision Problems

Multistage policies

Under model below, we want to pick fA0(L0), fA1(L1,A0, L0) to
optimize

E [Y (A1 = fA1(L1(L0,A0 = fA0(L0)),A0 = fA0(L0), L0),A0 = fA0(L0))]

A0L0

H0

L1 A1 L2

H1 H2

Expectation taken with respect to p(L0, L1(A0 = fA0(L0))).
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Multistage Decision Problems

General Definition

For i = 1, . . . , k , will define ~FA<i
(~LA<i−1

), ~LA<i
recursively:

~LA<0 ≡ {L0}
~FA<1(~LA<0) ≡ {fA0(L0)}

~LA<i
≡ Li (A<i = ~FA<i

(~LA<(i−1)
), ~LA<(i−1)

) ∪ ~LA<(i−1)

~FA<i
(~LA<(i−1)

) ≡ fAi−1
(~LA<i

) ∪ ~FA<(i−1)
(~LA<(i−2)

)

Example:

~FA<2 ≡ {fA0(L0), fA1(L0,A0 = fA0(L0), L1(A0 = fA0(L0), L0))}
~LA<1 ≡ {L0, L1(A0 = fA0(L0), L0)}

Like recursive substitution, but we use fAi
instead of setting Ai to a

constant.

How do we optimize ~FA<k
with respect to E [Lk(A<k = ~FA<k

)]?
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Multistage Decision Problems

Steps For Multistage Policy Problems

Identify counterfactual distribution. In this case

k∏
i=0

p(Li (~a) | L<i (~a)).

Pick estimator (marginal structural models, sequential parametric
g-formula, Q-learning).

Pick statistical models (regressions, etc.)

Fit by MLE.

Combine in the “right way.”

Report best policy set found.
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Multistage Decision Problems

Identification

If we can identify
∏k

i=0 p(Li (~a) | L<i (~a)), we can identify

E [Lk(~A = ~F~A
)] (a function of above and ~F~A

).

When is
∏k

i=0 p(Li (~a) | L<i (~a)) identifiable?

Under sequential ignorability (remember we could always do this, we
just summed out L<k before).

Identifying formula:

~a ≡ (ak , a<k) ≡ (ak , ak−1, a<k−1) ≡ . . . ≡ (ak , ak−1, . . . , a1).

We get E [Lk(A<k = ~FA<k
)] in stages.
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Multistage Decision Problems

Learning Multi-Stage Policies (Last Stage)

Assume we already chose A0, . . . ,Ak−1, and must choose Ak , for a
given setting l<(k+1), a<k .

Reduces to conditional ignorable case.

Optimize:

arg max
fAk

E [Lk(Ak = fA(l<k , a<k)) | l<(k+1), a<k ] =

arg max
fAk

E [Lk | Ak = fAk
(l<k , a<k), l<(k+1), a<k ].

Simply pick the best (in expectation) ak for each history l<(k+1), a<k .
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Multistage Decision Problems

Learning Multi-Stage Policies (Recursive Stage)

Assume we know fAm+1 , . . . , fAk
, 1 < m + 1 < k , and already chose

A0, . . . ,Am−1.

Must choose Am, for a given setting l<(m+1), a<m.

Optimize:

arg max
fAm

E [Lk(Am = fAm(l<(m+1), a<m)) | l<(m+1), a<m] =

arg max
fAm

E [Lk | Am = fAm(l<(m+1), a<m), l<(m+1), a<m].

Take expectation with respect to future (after m).

Already know all optimal future policies.

This is called backwards induction or dynamic programming.

Related to Q-learning in reinforcement learning.

How to estimate?
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Multistage Decision Problems

Q-Learning Example

Expectations we are optimizing at each stage are called “Q-functions”
in reinforcement learning.

If we have two treatment A0,A1, then:

Qopt
2 (l1, a1, l0, a0) = E [L2 | A1 = a1, l0, a0, l1]

Qopt
1 (l0, a0) = E [max

a1
Qopt

2 (L1, l0, a0, a1) | l0, a0]

Can use any expectation model, simple one is linear regression.
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Multistage Decision Problems

Q-Learning Example (2SLS)

Fit Qopt
2 (l1, a1, l0, a0;α) = E [L2 | A1 = a1, l0, a0, l1;α] by MLE,

yielding α̂.

This is a “stage 2” regression.

For data row j , replace Lj1 by

L̂j1 ≡ E [maxa1 Q
opt
2 (L1, l

j
0, a

j
0, a1; α̂) | l j0, a

j
0].

Fit E [L̂1 | A0, L0;β] by MLE, yielding β̂.

This is a “stage 1” regression.

Pick A0 to optimize.

Easy to generalize to any number of stages, models (see reading).
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Multistage Decision Problems

Relationship to Reinforcement Learning

fAi
are sometimes called dynamic treatment regimes, or policies.

Lots of overlap with the reinforcement learning literature.

Reinforcement learning:

Emphasis on online learning (agents acting in the world).
Can generate lots of own data (games, robotics).
No bias issues, large sample sizes.
Complex models (deep learning, etc.)
Very impressive real world results!

Causal inference:

Typically offline learning (patients data under suboptimal policy).
Cannot generate new data.
Confounding bias, small sample sizes.
Parametric models, counterfactual reasoning.
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Multistage Decision Problems

Policies Without Conditional Ignorability

Recall: front-door (this time with baseline L0):

AL0 L1 L2

H

p(L2(a)) =
∑
l1,l0

(∑
a′

p(L2 | l1, a′, l0)p(a′ | l0)

)
p(L1 = l1 | a, l0)p(l0)

Can pick fA(L0) to maximize E [L2(A = fA(L0))],
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∑
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Multistage Decision Problems

Identification Issues With Policy Learning

Sometimes p(L2(a)) is identified, but p(L2(a) | L0) is not:

L1L0 A L2

By ID algorithm,

p(L2(a)) =

∑
L0
p(L2, a | L1, L0)p(L0)∑
L0
p(a | L1, L0)p(L0)

But p(L2(a) | L0) is not (verify!)

So: can compute ACE, but cannot optimize fA(L1, L0) here without
more assumptions.
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Comparison With Reinforcement Learning

Next time: Learning Causal Structure
From Data.
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