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Level C is designed to build on the foundation 
developed in Levels A and B. In particular, 
Levels A and B introduced students to statistics 

as an investigatory process, the importance of using 
data to answer appropriately framed questions, types 
of variables (categorical versus numerical), graphical 
displays (including bar graph, dotplot, stemplot, his-
togram, boxplot, and scatterplot),  tabular displays 
(including two-way frequency tables for categorical 
data and both ungrouped and grouped frequency/
relative frequency tables for numerical data), and nu-
merical summaries (including counts, proportions, 
mean, median, range, quartiles, interquartile range, 
MAD, and QCR).

Additionally, Levels A and B covered common study 
designs (including census, simple random sample, and 
randomized designs for experiments), the process of 
drawing conclusions from data, and the role of prob-
ability in statistical investigations.

At Level C, all of these ideas are revisited, but the 
types of studies emphasized are of a deeper statistical 
nature. Statistical studies at this level require students 
to draw on basic concepts from earlier work, extend 
the concepts to cover a wider scope of investiga-
tory issues, and develop a deeper understanding of 
inferential reasoning and its connection to probability. 
Students also should have increased ability to explain 
statistical reasoning to others.

At Level C, students develop additional strategies for 
producing, interpreting, and analyzing data to help 
answer questions of interest. In general, students 
should be able to formulate questions that can be 
answered with data; devise a reasonable plan for col-
lecting appropriate data through observation, sampling, 
or experimentation; draw conclusions and use data to 
support these conclusions; and understand the role 
random variation plays in the inference process.

Specifi cally, Level C recommendations include:

I. Formulate Questions

→ Students should be able to formulate questions 
 and determine how data can be collected and 
 analyzed to provide an answer.

II. Collect Data

→ Students should understand what constitutes 
 good practice in conducting a sample survey. 
→ Students should understand what constitutes 
 good practice in conducting an experiment.
→ Students should understand what constitutes 
 good practice in conducting an observational 
 study.
→ Students should be able to design and
 implement a data collection plan for
 statistical studies, including observational
 studies, sample surveys, and simple
 comparative experiments.

Level C
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III. Analyze Data

→ Students should be able to identify
 appropriate ways to summarize numerical or
 categorical data using tables, graphical
 displays, and numerical summary statistics. 
→ Students should understand how sampling 
 distributions (developed through simulation) 
 are used to describe the sample-to-sample 
 variability of sample statistics. 
→ Students should be able to recognize
 association between two categorical variables.
→ Students should be able to recognize when 
 the relationship between two numerical
 variables is reasonably linear, know that 
 Pearson’s correlation coeffi cient is a measure of 
 the strength of the linear relationship between 
 two numerical variables, and understand the 
 least squares criterion in line fi tting.

IV. Interpret Results

→ Students should understand the meaning of 
 statistical signifi cance and the difference 
 between statistical signifi cance and practical 
 signifi cance.
→ Students should understand the role of p-values 
 in determining statistical signifi cance.
→ Students should be able to interpret the margin 
 of error associated with an estimate of a
 population characteristic.

An Introductory Example–Obesity
in America

Data and the stories that surround the data must be 
of interest to students! It is important to remember 
this when teaching data analysis. It is also important 
to choose data and stories that have enough depth to 
demonstrate the need for statistical thinking. The fol-
lowing example illustrates this. 

Students are interested in issues that affect their lives, 
and issues of health often fall into that category. News 
items are an excellent place to look for stories of cur-
rent interest, including items on health. One health-
related topic making lots of news lately is obesity. The 
following paragraph relates to a news story that is rich 
enough to provide a context for many of the statistical 
topics to be covered at Level C. 

A newspaper article that appeared in 2004 begins with 
the following lines: “Ask anyone: Americans are get-
ting fatter and fatter. Advertising campaigns say they 
are. So do federal offi cials and the scientists they rely 
on. … In 1991, 23% of Americans fell into the obese 
category; now 31% do, a more than 30% increase. But 
Dr. Jeffrey Friedman, an obesity researcher at Rock-
efeller University, argues that contrary to popular 
opinion, national data do not show Americans grow-
ing uniformly fatter. Instead, he says, the statistics 
demonstrate clearly that while the very fat are getting 
fatter, thinner people have remained pretty much the 
same. …The average weight of the population has in-
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creased by just seven to 10 pounds.” The discussion in 
the article refers to adults.

The following are suggested questions to explore with 
students who have a Level B background in statistics, 
but are moving on to Level C. 

→ Sketch a histogram showing what you think 
 a distribution of weights of American adults 
 might have looked like in 1991. Adjust the 
 sketch to show what the distribution of weights 
 might have looked like in 2002, the year of the 
 reported study. Before making your sketches, 
 think about the shape, center, and spread of 
 your distributions. Will the distribution be 
 skewed or symmetric? Will the median be 
 smaller than, larger than, or about the same 
 size as the mean? Will the spread increase as 
 you move from the 1991 distribution to the 
 2002 distribution?
→ Which sounds more newsworthy: “Obesity has 
 increased by more than 30%” or “On the aver-
 age, the weight of Americans has increased by 
 fewer than 10 pounds”? Explain your reasoning.
→ The title of the article is The Fat Epidemic: He 
 Says It’s an Illusion. [See New York Times, June 8, 
 2004, or CHANCE, Vol. 17., No. 4, Fall 2004, 
 p. 3 for the complete article.] Do you think this 
 is a fair title? Explain your reasoning. 
→ The data on which the percentages are based 
 come from the National Center for Health 

 Statistics, National Health and Nutrition
 Examination Survey 2002. This 
 is a survey of approximately 5,800 residents 
 of the United States. Although the survey 
 design is more complicated than a simple 
 random sample, the margin of error calculated 
 as if it were a simple random sample is a
 reasonable approximation. What is an
 approximate margin of error associated with 
 the 31% estimate of obesity for 2004?
 Interpret this margin of error for a newspaper 
 reader who never studied statistics. 

For the curious, information about how obesity is de-
fi ned can be found at www.amstat.org/education/gaise/3.

In answering these questions, students at Level C 
should realize that a distribution of weights is going 
to be skewed toward the larger values. This generally 
produces a situation in which the mean is larger than 
the median. Because 8% shifted over the obesity line 
between 1991 and 2002, but the average weight (or 
center) did not shift very much, the upper tail of the 
distribution must have gotten “fatter,” indicating a 
larger spread for the 2002 data. Students will have 
a variety of interesting answers for the second and 
third questions. The role of the teacher is to help 
students understand whether their answers are sup-
ported by the facts. The last question gets students 
thinking about an important estimation concept 
studied at Level C. 
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The Investigatory Process at Level C 

Because Level C revisits many of the same topics ad-
dressed at Levels A and B, but at a deeper and more 
sophisticated level, we begin by describing how the 
investigatory process looks at Level C. This general 
discussion is followed by several examples.

Formulating Questions

As stated at the beginning of Level A, data are more 
than just numbers. Students need to understand the 
types of questions that can be answered with data. 
For example, the question “Is the overall health of 
high-school students declining in this country?” is 
too big a question to answer with a statistical in-
vestigation (or even many statistical investigations). 
Certain aspects of the health of students, however, 
can be investigated by formulating more specifi c 
questions, such as “What is the rate of obesity 
among high-school students?”; “What is the average 
daily caloric intake for high-school seniors?”; “Is a 
three-day-a-week exercise regimen enough to main-
tain heart rate and weight within acceptable limits?” 
Question formulation, then, becomes the starting 
point for a statistical investigation.

Collecting Data—Types of Statistical Studies

Most questions that can be answered through data 
collection and interpretation require data from a 
designed study, either a sample survey or an experiment. 

These two types of statistical investigations have 
some common elements—each requires randomiza-
tion for both purposes of reducing bias and building 
a foundation for statistical inference and each makes 
use of the common inference mechanisms of margin 
of error in estimation and p-value in hypothesis test-
ing (both to be explained later). But these two types 
of investigations have very different objectives and 
requirements. Sample surveys are used to estimate or 
make decisions about characteristics (parameters) of 
populations. A well-defi ned, fi xed population is the 
main ingredient of such a study. Experiments are used 
to estimate or compare the effects of different experi-
mental conditions (treatments), and require well-de-
fi ned treatments and experimental units on which to 
study those treatments. 

Estimating the proportion of residents of a city that 
would support an increase in taxes for education re-
quires a sample survey. If the selection of residents 
is random, then the results from the sample can be 
extended to represent the population from which the 
sample was selected. A measure of sampling error 
(margin of error) can be calculated to ascertain how 
far the estimate is likely to be from the true value. 

Testing to see if a new medication to improve breath-
ing for asthma patients produces greater lung capacity 
than a standard medication requires an experiment in 
which a group of patients who have consented to par-
ticipate in the study are randomly assigned to either 
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the new or the standard medication. With this type of 
randomized comparative design, an investigator can 
determine, with a measured degree of uncertainty, 
whether the new medication caused an improvement 
in lung capacity. Randomized experiments are, in fact, 
the only type of statistical study capable of establish-
ing cause and effect relationships. Any generalization 
extends only to the types of units used in the experi-
ment, however, as the experimental units are not usu-
ally randomly sampled from a larger population. To 
generalize to a larger class of experimental units, more 
experiments would have to be conducted. That is one 
reason why replication is a hallmark of good science. 

Studies that have no random selection of sampling 
units or random assignment of treatments to ex-
perimental units are called observational studies in this 
document. A study of how many students in your 
high school have asthma and how this breaks down 
among gender and age groups would be of this type. 
Observational studies are not amenable to statistical 
inference in the usual sense of the term, but they 
can provide valuable insight into the distribution of 
measured values and the types of associations among 
variables that might be expected. 

At Level C, students should understand the key 
features of both sample surveys and experimental 
designs, including how to set up simple versions of 
both types of investigations, how to analyze the data 
appropriately (as the correct analysis is related to the 

design), and how to clearly and precisely state conclu-
sions for these designed studies. Key elements of the 
design and implementation of data collection plans for 
these types of studies follow. 

Sample Surveys

Students should understand that obtaining good re-
sults from a sample survey depends on four basic fea-
tures: the population, the sample, the randomization 
process that connects the two, and the accuracy of the 
measurements made on the sampled elements. For ex-
ample, to investigate a question on health of students, 
a survey might be planned for a high school. What is 
the population to be investigated? Is it all the students 
in the school (which changes on a daily basis)? Per-
haps the questions of interest involve only juniors and 
seniors. Once the population is defi ned as precisely as 
possible, one must determine an appropriate sample 
size and a method for randomly selecting a sample of 
that size. Is there, for example, a list of students who 
can then be numbered for random selection? Once 
the sampled students are found, what questions will 
be asked? Are the questions fair and unbiased (as far 
as possible)? Can or will the students actually answer 
them accurately? 

When a sample of the population is utilized, errors 
may occur for several reasons, including:
→ the sampling procedure is biased
→ the sample was selected from the wrong population
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→ some of the units selected to be in the sample 
 were unable (or unwilling) to participate
→ the questions were poorly written 
→ the responses were ambiguous 

These types of errors should be considered carefully 
before the study begins so plans can be made to reduce 
their chance of occurring as much as possible. One 
way to resolve the bias in the sampling procedure is to 
incorporate randomness into the selection process.

Two samples of size 50 from the same population 
of students will most likely not give the same result 
on, say, the proportion of students who eat a healthy 
breakfast. This variation from sample to sample is 
called sampling variability. When randomness is in-
corporated into the sampling procedure, probability 
provides a way to describe the “long-run” behavior of 
this sampling variability. 

Experiments

At Level C, students should understand that obtaining 
good results from an experiment depends upon four 
basic features: well-defi ned treatments, appropriate 
experimental units to which these treatments can be 
assigned, a sound randomization process for assign-
ing treatments to experimental units, and accurate 
measurements of the results of the experiment. Ex-
perimental units generally are not randomly selected 
from a population of possible units. Rather, they are 
the ones that happen to be available for the study. In 

experiments with human subjects, the people involved 
are often volunteers who have to sign an agreement 
stating they are willing to participate in the experi-
mental study. In experiments with agricultural crops, 
the experimental units are the fi eld plots that happen 
to be available. In an industrial experiment on process 
improvement, the units may be the production lines in 
operation during a given week. 

As in a sample survey, replicating an experiment will 
produce different results. Once again, random assign-
ment of experimental units to treatments (or vice versa) 
allows the use of probability to predict the behavior in 
the resulting values of summary statistics from a large 
number of replications of the experiment. Randomiza-
tion in experiments is important for another reason. 
Suppose a researcher decides to assign treatment A 
only to patients over the age of 60 and treatment B 
only to patients under the age of 50. If the treatment 
responses differ, it is impossible to tell whether the 
difference is due to the treatments or the ages of the 
patients. (This kind of bias in experiments and other 
statistical studies is called confounding.) The randomiza-
tion process, if properly done, will usually balance 
treatment groups so this type of bias is minimized. 

Observational Studies

At Level C, students should understand that observa-
tional studies are useful for suggesting patterns in data 
and relationships between variables, but do not provide a 
strong foundation for estimating population parameters 

When
randomness is
incorporated 
into the
sampling
procedure, 
probability
provides a way 
to describe
the ‘long-run’
behavior
of sampling
variability.”

“
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or establishing differences among treatments. Asking 
the students in one classroom whether they eat a 
healthy breakfast is not going to help you establish the 
proportion of healthy breakfast-eaters in the school, 
as the students in one particular classroom may not be 
representative of the students in the school. Random 
sampling is the only way to be confi dent of a represen-
tative sample for statistical purposes. Similarly, feed-
ing your cats Diet A and your neighbor’s cats Diet B is 
not going to allow you to claim that one diet is better 
than the other in terms of weight control, because 
there was no random assignment of experimental 
units (cats) to treatments (diets). As a consequence, 
confounding may result. Studies of the type suggested 
above are merely observational; they may suggest pat-
terns and relationships, but they are not a reliable basis 
for statistical inference. 

Analyzing Data 

When analyzing data from well-designed sample sur-
veys, students at Level C should understand that an 
appropriate analysis is one that can lead to justifi able 
inferential statements about population parameters 
based on estimates from sample data. The ability to 
draw conclusions about the population using informa-
tion from a sample depends on information provided 
by the sampling distribution of the sample statistic  
being used to summarize the sample data. At Level 
C, the two most common parameters of interest are 
the population proportion for categorical data and the 

population mean for numerical data. The appropriate 
sample statistics used to estimate these parameters are 
the sample proportion and the sample mean, respec-
tively. At Level C, the sample-to-sample variability, 
as described by the sampling distribution for each of 
these two statistics, is addressed in more depth.

Exploring how the information provided by a sam-
pling distribution is used for generalizing from a 
sample to the larger population enables students at 
Level C to draw more sophisticated conclusions from 
statistical studies. At Level C, it is recommended that 
the sampling distributions of a sample proportion and 
of a sample mean be developed through simulation. 
More formal treatment of sampling distributions can 
be left to AP Statistics and college-level introductory 
statistics courses.

Because the sampling distribution of a sample statis-
tic is a topic with which many teachers may not be 
familiar, several examples are included here to show 
how simulation can be used to obtain an approximate 
sampling distribution for a sample proportion and for 
a sample mean.

Properties of the sampling distribution for a sample 
proportion can be illustrated by simulating the process 
of selecting a random sample from a population using 
random digits as a device to model various populations. 

Example 1: The Sampling Distribution
of a Sample Proportion
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For example, suppose a population is assumed to have 
60% “successes” (p = .6) and we are to take a random 
sample of n = 40 cases from this population. How far 
can we expect the sample proportion of successes to 
deviate from the true population value of .60? This 
can be answered by determining an empirical sam-
pling distribution for the sample proportion. 

One way to model a population with 60% successes 
(and 40% failures) is to utilize the 10 digits 0, 1,…, 9. 
Label six of the 10 digits as “success” and the other 
four as “failures.” To simulate selecting a sample of 
size 40 from this population, randomly select 40 ran-
dom digits (with replacement). Record the number of 
successes out of the 40 digits selected and convert this 
count to the proportion of successes in the sample. 
Note that:

Proportion of Successes in the Sample 

Repeating this process a large number of times, and 
determining the proportion of successes for each 
sample, illustrates the idea of the sample-to-sample 
variability in the sample proportion. 

Simulating the selection of 200 random samples of 
size 40 from a population with 60% successes and de-
termining the proportion of success for each sample 

resulted in the empirical distribution shown in Figure 
25. This empirical distribution is an approximation to 
the true sampling distribution of the sample propor-
tion for samples of size 40 from a population in which 
the actual proportion is .60.
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Summarizing the above distribution based on its 
shape, center, and spread, one can state that this em-
pirical sampling distribution has a mound shape (ap-
proximately normal). Because the mean and standard 
deviation of the 200 sample proportions are .59 and .08, 
respectively, the empirical distribution shown in Figure 
25 has a mean of .59 and a standard deviation of .08.

By studying this empirical sampling distribution, and 
others that can be generated in the same way, students 
will see patterns emerge. For example, students will 
observe that, when the sample size is reasonably large 

Figure 25: Histogram of sample proportions

Number of Successes in the Sample
=

Sample Size
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(and the population proportion of successes is not too 
near the extremes of 0 or 1), the shapes of the result-
ing empirical sampling distributions are approximately 
normal. Each of the empirical sampling distributions 
should be centered near the value of p, the population 
proportion of successes, and the standard deviation 
for each distribution should be close to:

p (1− p)
n

Note that in Example 1, the mean of the empirical dis-
tribution is .59, which is close to .6, and the standard 
deviation is .08, which is close to:

.6(.4)
40

≈ .0775
 

A follow-up analysis of these empirical sampling dis-
tributions can show students that about 95% of the 
sample proportions lie within a distance of: 

.6(.4)
40

≈0.1552

from the true value of p. This distance is called the 
margin of error.

Properties of the sampling distribution for a sample 
mean can be illustrated in a way similar to that used 
for proportions in Example 1. Figure 26 shows the 
distribution of the sample mean when 200 samples of 

30 random digits are selected (with replacement) and 
the sample mean is computed. This simulates sam-
pling from a population that has a uniform distribu-
tion with equal numbers of 0s, 1s, 2s,…, 9s. Note that 
this population of numerical values has a mean, μ, of 
4.5 and a standard deviation, σ, of 2.9.
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The empirical sampling distribution shown in Figure 
26 can be described as approximately normal with a 
mean of 4.46 (the mean of the 200 sample means from 
the simulation) and a standard deviation of 0.5 (the 
standard deviation of the 200 sample means). 

By studying this empirical sampling distribution, and 
others that can be generated in similar ways, students 
will see patterns emerge. For example, students will 

Figure 26: Histogram of sample means

Example 2: The Sampling Distribution of a Sample Mean
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observe that, when the sample size is reasonably large, 
the shapes of the empirical sampling distributions are 
approximately normal. Each of the empirical sam-
pling distributions should be centered near the value 
of μ, the population mean, and the standard deviation 
for each distribution should be close to:

n

Note that in Example 2, the mean of the empirical 
sampling distribution is 4.46, which is close to μ = 4.5, 
and the standard deviation (0.5) is close to:

 
2.9 30 0.53n = =

The margin of error in estimating a population mean 
using the sample mean from a single random sample 
is approximately:

2
n

The sample mean should be within this distance of 
the true population mean about 95% of the time in 
repeated random sampling.  

Interpreting Results

Generalizing from Samples

The key to statistical inference is the sampling distribu-
tion of the sample statistic, which provides information 

about the population parameter being estimated. As 
described in the previous section, knowledge of the 
sampling distribution for a statistic, like a sample pro-
portion or sample mean, leads to a margin of error 
that provides information about the maximum likely 
distance between a sample estimate and the popula-
tion parameter being estimated. Another way to state 
this key concept of inference is that an estimator plus 
or minus the margin of error produces an interval of 
plausible values for the population parameter. Any one 
of these plausible values could have produced the ob-
served sample result as a reasonably likely outcome. 

Generalizing from Experiments

Do the effects of the treatments differ? In analyzing 
experimental data, this is one of the fi rst questions 
asked. This question of difference is generally posed 
in terms of differences between the centers of the data 
distributions (although it could be posed as a differ-
ence between the 90th percentiles or any other mea-
sure of location in a distribution). Because the mean 
is the most commonly used statistic for measuring the 
center of a distribution, this question of differences 
is generally posed as a question about a difference in 
means. The analysis of experimental data, then, usu-
ally involves a comparison of means.

Unlike sample surveys, experiments do not depend 
on random samples from a fi xed population. Instead, 
they require random assignment of treatments to pre-
selected experimental units. The key question, then, 

σ

σ

σ
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is: “Could the observed difference in treatment means 
be due to the random assignment (chance) alone, or 
can it be attributed to the treatments administered?”

The following examples are designed to illustrate and 
further illuminate the important concepts at Level C 
by carefully considering the four phases of a statistical 
analysis—question, design, analysis, interpretation—
in a variety of contexts. 

A survey of student music preferences was introduced 
at Level A, where the analysis consisted of making 
counts of student responses and displaying the data in 
a bar graph. At Level B, the analysis was expanded to 
consider relative frequencies of preferences and cross-
classifi ed responses for two types of music displayed 
in a two-way table. Suppose the survey included the 
following questions:

1. What kinds of music do you like? 

 Do you like country music?

 Yes or No

 Do you like rap music?

 Yes or No

 Do you like rock music?

 Yes or No

2. Which of the following types of music do you like most? 
Select only one.

 Country Rap/Hip Hop Rock 

In order to be able to generalize to all students at the 
school, a representative sample of students from the 
school is needed. This could be accomplished by se-
lecting a simple random sample of 50 students from 
the school. The results can then be generalized to the 
school (but not beyond), and the Level C discussion 
will center on basic principles of generalization—or 
statistical inference. 

A Level C analysis begins with a two-way table of 
counts that summarizes the data on two of the ques-
tions: “Do you like rock music?” and “Do you like 
rap music?” The table provides a way to separately ex-
amine the responses to each question and to explore 
possible connections (association) between the two 
categorical variables. Suppose the survey of 50 stu-
dents resulted in the data summarized in Table 11. 

As demonstrated at Level B, there are a variety of ways 
to interpret data summarized in a two-way table, such 
as Table 11. Some examples based on all 50 students in 
the survey include:
→ 25 of the 50 students (50%) liked both rap and 
 rock music. 
→ 29 of the 50 students (58%) liked rap music. 
→ 19 of the 50 students (38%) did not like rock music. 

Example 3: A Survey of Music Preferences
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One type of statistical inference relates to conjectures 
(hypotheses) made before the data were collected. 
Suppose a student says “I think more than 50% of 
the students in the school like rap music.” Because 
58% of the students in the sample liked rap music 
(which is more than 50%), there is evidence to sup-
port the student’s claim. However, because we have 
only a sample of 50 students, it is possible that 50% of 
all students like rap (in which case, the student’s claim 
is not correct), but the variation due to random sam-
pling might produce 58% (or even more) who like rap. 
The statistical question, then, is whether the sample 
result of 58% is reasonable from the variation we ex-
pect to occur when selecting a random sample from a 
population with 50% successes.

One way to arrive at an answer is to set up a hypo-
thetical population that has 50% successes (such as 
even and odd digits produced by a random number 
generator) and repeatedly take samples of size 50 from 
it, each time recording the proportion of even digits. 

The sampling distribution of proportions so gener-
ated will be similar to the one below. 

0.30 0.40 0.50 0.60 0.70
Proportion

Movable line is at 0.58

Sample proportions

Based on this simulation, a sample proportion greater 
than or equal to the observed .58 occurred 12 times 
out of 100 just by chance variation alone when the 
actual population proportion is .50. This suggests the 
result of .58 is not a very unusual occurrence when 
sampling from a population with .50 as the “true” 
proportion of students who like rap music. So a popu-
lation value of .50 is plausible based on what was ob-
served in the sample, and the evidence in support of 
the student’s claim is not very strong. The fraction of 
times the observed result is matched or exceeded (.12 
in this invest igat ion) is cal led the approximate 

                         Like Rock Music?

Yes                No Row 
Totals

Like Rap 
Music?

Yes 25   4 29

No   6 15 21

Column Totals 31 19 50

Figure 27: Dotplot of sample proportions from a hypo-
thetical population in which 50% like rap music

Table 11: Two-Way Frequency Table
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p-value. The p-value represents the chance of observ-
ing the result observed in the sample, or a result more 
extreme, when the hypothesized value is in fact cor-
rect. A small p-value would have supported the stu-
dent’s claim, because this would have indicated that if 
the population proportion was .50, it would have been 
very unlikely that a sample proportion of .58 would 
have been observed. 

Suppose another student hypothesized that more 
than 40% of the students in the school like rap music. 
To test this student’s claim, samples of size 50 must 
now be repeatedly selected from a population that has 
40% successes. Figure 28 shows the results of one such 
simulation. The observed result of .58 was reached 
only one time out of 100, and no samples produced 
a proportion greater than .58. Thus, the approximate 

p-value is .01, and it is not likely that a population in 
which 40% of the students like rap music would have 
produced a sample proportion of 58% in a random 
sample of size 50. This p-value provides very strong 
evidence in support of the student’s claim that more 
than 40% of the students in the entire school like rap 
music.

Another way of stating the above is that .5 is a plausible 
value for the true population proportion, based on the 
sample evidence, but .4 is not. A set of plausible values 
can be found by using the margin of error introduced 
in Example 1. As explained previously, the margin of 
error for a sample proportion is approximately: 

2 p (1− p)
n

However, in this problem, the true value of p is un-
known. Our sample proportion 58.ˆ =p( )  is our “best 
estimate” for what p might be, so the margin of error 
can be estimated to be:

14.
50

)42(.58.
2

)ˆ1(ˆ
2 ≈=−

n
pp

Thus, any proportion between .58 − .14 = .44 and 
.58 + .14 = .72 can be considered a plausible value 
for the true proportion of students at the school who 
like rap music. Notice that .5 is well within this in-
terval, but .4 is not. Figure 28: Dotplot of sample proportions from a hypo-

thetical population in which 40% like rap music

0.20 0.30 0.40 0.50 0.60
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Another type of question that could be asked about 
the students’ music preferences is of the form “Do 
those who like rock music also tend to like rap mu-
sic?” In other words, is there an association between 
liking rock music and liking rap music? The same data 
from the random sample of 50 students can be used to 
answer this question.

According to Table 11, a total of 31 students in the 
survey like rock music. Among those students, the 
proportion who also like rap music is 25/31 = .81. 
Among the 19 students who do not like rock music, 
4/19 = .21 is the proportion who like rap music. The 
large difference between these two proportions (.60) 
suggests there may be a strong association between 
liking rock music and liking rap music. But could this 
association simply be due to chance (a consequence 
only of the random sampling)? 

If there were no association between the two groups, 
then the 31 students who like rock would behave as a 
random selection from the 50 in the sample. We would 
expect the proportion who like rap among these 31 
students to be close to the proportion who like rap 
among the 19 students who don’t like rock. Essential-
ly, this means that if there is no association, we expect 
the difference between these two proportions to be 
approximately 0. Because the difference in our survey 
is .6, this suggests that there is an association. Can the 
difference, .6, be explained by the random variation 
we expect when selecting a random sample?

To simulate this situation, we create a population of 
29 1s (those who like rap) and 21 0s (those who do 
not like rap) and mix them together. Then, we select 
31 (representing those who like rock) at random and 
see how many 1s (those who like rap) we get. It is this 
entry that goes into the (yes, yes) cell of the table, and 
from that data the difference in proportions can be 
calculated. Repeating the process 100 times produces 
a simulated sampling distribution for the difference 
between the two proportions, as shown in Figure 29. 

Figure 29: Dotplot showing simulated sampling
distribution
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The observed difference in proportions from the 
sample data, .6, was never reached in 100 trials, in-
dicating that the observed difference cannot be at-
tributed to chance alone. Thus, there is convincing 
evidence of a real association between liking rock 
music and liking rap music. 

What is the effect of different durations of light and 
dark on the growth of radish seedlings? This ques-
tion was posed to a class of biology students who 
then set about designing and carrying out an experi-
ment to investigate the question. All possible relative 
durations of light to dark cannot possibly be investi-
gated in one experiment, so the students decided to 
focus the question on three treatments: 24 hours of 
light, 12 hours of light and 12 hours of darkness, and 
24 hours of darkness. This covers the extreme cases 
and one in the middle. 

With the help of a teacher, the class decided to use 
plastic bags as growth chambers. The plastic bags 
would permit the students to observe and measure 
the germination of the seeds without disturbing them. 
Two layers of moist paper towel were put into a dis-
posable plastic bag, with a line stapled about 1/3 of 
the way from the bottom of the bag (see Figure 30) to 
hold the paper towel in place and to provide a seam to 
hold the radish seeds. 

Although three growth chambers would be suffi cient 
to examine the three treatments, this class made four 
growth chambers, with one designated for the 24 
hours of light treatment, one for the 12 hours of light 
and 12 hours of darkness treatment, and two for the 
24 hours of darkness treatment. One hundred twenty 
seeds were available for the study. Thirty of the seeds 
were chosen at random and placed along the stapled 
seam of the 24 hours of light bag. Thirty seeds were 
then chosen at random from the remaining 90 seeds 
and placed in the 12 hours of light and 12 hours of 
darkness bag. Finally, 30 of the remaining 60 seeds 
were chosen at random and placed in one of the 24 
hours of darkness bags. The fi nal 30 seeds were placed 
in the other 24 hours of darkness bag. After three 
days, the lengths of radish seedlings for the germinat-
ing seeds were measured and recorded. These data are 
provided in Table 12; the measurements are in milli-

Example 4: An Experiment on the Effects of Light on the Growth 
of Radish Seedlings

Figure 30: Seed experiment

Seeds
Staples
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meters. Notice that not all of the seeds in each group 
germinated.

A good fi rst step in the analyses of numerical data 
such as these is to make graphs to look for patterns 
and any unusual departures from the patterns. Box-
plots are ideal for comparing data from more than 
one treatment, as you can see in Figure 31. Both the 
centers and the spreads increase as the amount of 
darkness increases. There are three outliers (one at 20 

mm and two at 21 mm) in the Treatment 1 (24 hours 
of light) data. Otherwise, the distributions are fairly 
symmetric, which is good for statistical inference. 

In Figure 31, Treatment 1 is 24 hours of light; treat-
ment 2 is 12 hours of light and 12 of darkness; treat-
ment 3 is 24 hours of darkness.

The summary statistics for these data are shown in 
Table 13. 

Table 12: Lengths of Radish Seedlings

Treatment 1 
24 light

Treatment 2 
12 light, 12 

dark

Treatment 3
24 dark

Treatment 1 
24 light

Treatment 2 
12 light, 12 

dark

Treatment 3
24 dark

2   3   5 20 10 17 15 30

3   4   5 20 10 20 15 30

5   5   8 22 10 20 15 30

5   9   8 24 10 20 15 31

5 10   8 25 10 20 15 33

5 10   8 25 10 20 15 35

5 10 10 25 10 21 16 35

7 10 10 25 10 21 20 35

7 10 10 25 14 22 20 35

7 11 10 26 15 22 20 35

8 13 10 29 15 23 20 35

8 15 11 30 20 25 20 36

8 15 14 30 21 25 20 37

9 15 14 30 21 27 20 38

20 40
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Experiments are designed to compare treatment 
effects, usually by comparing means. The original 
question on the effect of different periods of light 
and dark on the growth of radish seedlings might be 
turned into two questions about treatment means. Is 
there evidence that the 12 hours of light and 12 hours 
of dark (Treatment 2) group has a signifi cantly higher 
mean than the 24 hours of light (Treatment 1) group? 
Is there evidence that the 24 hours of dark (Treatment 
3) group has a signifi cantly higher mean than the 12 
hours of light and 12 hours of dark (Treatment 2) 
group? Based on the boxplots and the summary sta-
tistics, it is clear that the sample means differ. Are these 

differences large enough to rule out chance variation as a possible 
explanation for the observed difference? 

The Treatment 2 mean is 6.2 mm larger than the 
Treatment 1 mean. If there is no real difference be-
tween the two treatments in terms of their effect on 
seedling growth, then the observed difference must 
be due to the random assignment of seeds to the 
bags; that is, one bag was simply lucky enough to get 
a preponderance of good and lively seeds. But, if a dif-
ference this large (6.2 mm) is likely to be the result of 
randomization alone, then we should see differences 
of this magnitude quite often if we repeatedly re-
randomize the measurements and calculate a new dif-
ference in observed means. This, however, is not the 
case, as one can see from Figure 32. This dotplot was 
produced by mixing the growth measurements from 
Treatments 1 and 2 together, randomly splitting them 
into two groups of 28 measurements, recording the 
difference in means for the two groups, and repeating 
the process 200 times. 

The observed difference of 6.2 mm was exceeded only 
one time in 200 trials, for an approximate p-value of 

Treat-
ment

n Mean Median Std. Dev.

1 28   9.64    9.5 5.03

2 28 15.82 16.0 6.76

3 58 21.86 20.0 9.75

Table 13: Treatment Summary Statistics

Figure 31: Boxplot showing growth under different 
conditions
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1/200. This is very small, and gives extremely strong 
evidence to support the hypothesis that there is a sta-
tistically signifi cant difference between the means for 
Treatments 1 and 2. The observed difference of 6.2 mm 
is very unlikely to be due simply to chance variation. 

In a comparison of the means for Treatments 2 and 3, 
the same procedure is used, except that the combined 
measurements are split into groups of 28 and 58 each 
time. The observed difference of 6 mm was exceeded 
only one time out of 200 trials (see Figure 33), giving 
extremely strong evidence of a statistically signifi cant 
difference between the means for Treatments 2 and 
3. In summary, the three treatment groups show 
statistically signifi cant differences in mean growth 
that cannot reasonably be explained by the random as-

signment of seeds to the bags. This gives us convinc-
ing evidence of a treatment effect—the more hours 
of darkness, the greater the growth of the seedling, at 
least for these three periods of light versus darkness. 

Students should be encouraged to delve more deeply 
into the interpretation, relating it to what is known 
about the phenomenon or issue under study. Why do 
the seedlings grow faster in the dark? Here is an ex-
planation from a biology teacher. It seems to be an 
adaptation of plants to get the seedlings from the dark 
(under ground) where they germinate into the light 
(above ground) as quickly as possible. Obviously, the 
seedling cannot photosynthesize in the dark and is 
using up the energy stored in the seed to power the 

Figure 33: Dotplot showing differences of means
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Figure 32: Dotplot showing differences of means
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growth. Once the seedling is exposed to light, it shifts 
its energy away from growing in length to producing 
chlorophyll and increasing the size of its leaves. These 
changes allow the plant to become self-suffi cient 
and begin producing its own food. Even though the 
growth in length of the stem slows, the growth in di-
ameter of the stem increases and the size of the leaves 
increases. Seedlings that continue to grow in the dark 
are spindly and yellow, with small yellow leaves. Seed-
lings grown in the light are a rich, green color with 
large, thick leaves and short stems.

What is the density of the Earth? This is a question 
that intrigued the great scientist Henry Cavendish, 
who attempted to answer the question in 1798. Cav-
endish estimated the density of the Earth by using the 
crude tools available to him at the time. He did not 
literally take a random sample; he measured on dif-
ferent days and at different times, as he was able. But 
the density of the Earth does not change over time, 
so his measurements can be thought of as a random 
sample of all the measurements he could have taken 
on this constant. The variation in the measurements 
is due to his measurement error, not to changes in the 
Earth’s density. The Earth’s density is the constant 
that is being estimated. 

This is a typical example of an estimation problem 
that occurs in science. There is no real “popula-
tion” of measurements that can be sampled; rather, 
the sample data is assumed to be a random selection 
from the conceptual population of all measurements 
that could have been made. At this point, there may 
be some confusion between an “experiment” and a 
“sample survey” because Cavendish actually conduct-
ed a scientifi c investigation to get his measurements. 
The key, however, is that he conducted essentially the 
same investigation many times with a goal of estimat-
ing a constant, much like interviewing many people 
to estimate the proportion who favor a certain candi-
date for offi ce. He did not randomly assign treatments 
to experimental units for the purpose of comparing 
treatment effects. 

The famous Cavendish data set contains his 29 mea-
surements of the density of the Earth, in grams per 
cubic centimeter. The data are shown below [Source:  
http://lib.stat.cmu.edu/DASL]: 
5.50 5.57 5.42 5.61 5.53 5.47 4.88 
5.62 5.63 4.07 5.29 5.34 5.26 5.44 
5.46 5.55 5.34 5.30 5.36 5.79 5.75 
5.29 5.10 5.86 5.58 5.27 5.85 5.65 

5.39

One should look at the data before proceeding with an 
analysis. The histogram in Figure 34 shows the data to 
be roughly symmetric, with one unusually small value. 
If Cavendish were alive, you could ask him if he had 

Example 5: Estimating the Density of the Earth—
A Classical Study
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made a mistake (and that is certainly what you should 
do for a current data set). 
The mean of the 29 measurements is 5.42 and the 
standard deviation is 0.339. Recall that the margin of 
error for the sample mean is:

2
n

where σ is the population standard deviation. In 
this problem, the population standard deviation is 
not known; however, the sample standard deviation 
provides an estimate for the population standard 
deviation. Consequently, the margin of error can be 
estimated to be:

2
s
n

= 2
0.339

29
= 0.126

The analysis shows that any value between 5.420 
– 0.126 and 5.420 + 0.126, or in the interval (5.294, 
5.546), is a plausible value of the density of the Earth. 
That is, any value in the interval is consistent with the 
data obtained by Cavendish. Now, the questionable 
low observation should be taken into account, as it 
will lower the mean and increase the standard devia-
tion. If that measurement is regarded as a mistake and 
removed from the data set, the mean of the 28 re-
maining observations is 5.468 and the standard devia-
tion is 0.222, producing a margin of error of 0.084 and 
an interval of plausible values of (5.384, 5.552). 

Students now can check on how well Cavendish did; 
modern methods pretty much agree that the average 
density of the Earth is about 5.515 grams per cubic 
centimeter. The great 18th century scientist did well!

Regression analysis refers to the study of relationships 
between variables. If the “cloud” of points in a scat-
terplot of paired numerical data has a linear shape, 
a straight line may be a realistic model of the rela-
tionship between the variables under study. The least 
squares line runs through the center (in some sense) 
of the cloud of points. Residuals are defi ned to be 
the deviations in the y direction between the points 
in the scatterplot and the least squares line; spread 
is now the variation around the least squares line, as 

σ
Example 6: Linear Regression Analysis—Height vs.
Forearm Length 

Figure 34: Histogram of Earth density measurements
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measured by the standard deviation of the residuals. 
When using a fi tted model to predict a value of y from 
x, the associated margin of error depends on the stan-
dard deviation of the residuals.

Relationships among various physical features, such 
as height versus arm span and neck size versus shoe 
size, can be the basis of many interesting questions 
for student investigation. If I were painting a picture 
of a person, how could I get the relative sizes of the 
body parts correct? This question prompted students 
to carry out an investigation of one of the possible re-
lationships, that between forearm length and height. 

The students responsible for the study sampled other 
students on which to make forearm and height mea-
surements. Although the details of how the sample 
actually was selected are not clear, we will suppose 
that it is representative of students at the school and 
has the characteristics of a random sample. An impor-
tant consideration here is to agree on the defi nition 
of “forearm” before beginning to take measurements. 
The data obtained by the students (in centimeters) are 
provided in Table 14. 

A good fi rst step in any analysis is to plot the data, 
as we have done in Figure 35. The linear trend in the 
plot is fairly strong. The scatterplot, together with 
Pearson’s correlation coeffi cient of .8, indicate that a 

Forearm 
(cm)

Height (cm) Forearm 
(cm)

Height (cm)

45.0 180.0 41.0 163.0

44.5 173.2 39.5 155.0

39.5 155.0 43.5 166.0

43.9 168.0 41.0 158.0

47.0 170.0 42.0 165.0

49.1 185.2 45.5 167.0

48.0 181.1 46.0 162.0

47.9 181.9 42.0 161.0

40.6 156.8 46.0 181.0

45.5 171.0 45.6 156.0

46.5 175.5 43.9 172.0

43.0 158.5 44.1 167.0

Figure 35: Scatterplot and residual plot
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line would be a reasonable model for summarizing the 
relationship between height and forearm length.

The scatterplot includes a graph of the least squares line:

Predicted Height = 45.8 + 2.76(Forearm Length).

The plot below the scatterplot shows the residuals. 
There are a few large residuals but no unusual pat-
tern in the residual plot. The slope (about 2.8) can be 
interpreted as an estimate of the average difference 
in heights for two persons whose forearms are 1 cm 
different in length. The intercept of 45.8 centime-
ters cannot be interpreted as the expected height 
of a person with a forearm zero centimeters long! 
However, the regression line can reasonably be used 
to predict the height of a person for whom the fore-
arm length is known, as long as the known forearm 
length is in the range of the data used to develop 
the prediction equation (39 to 50 cm for these data). 
The margin of error for this type of prediction is 
approximately 2(standard deviation of the residuals). 
For these data, the standard deviation of the residu-
als is 5.8 (not shown here, but provided as part of the 
computer output), so the margin of error is 2(5.8) 
= 11.6 cm. The predicted height of someone with a 
forearm length of 42 cm would be:

Predicted Height = 45.8 + 2.76(42) = 161.7 cm

With 95% confi dence, we would predict the height of 
people with forearm length 42 cm to be between 150.1 
cm and 173.3 cm (161.7 ± 11.6).

Is the slope of 2.8 “real,” or simply a result of chance 
variation from the random selection process? This 
question can be investigated using simulation. A 
description of this simulation is included in the Ap-
pendix to Level C.

Data often are presented to us in a form that does not 
call for much analysis, but does require some insight 
into statistical principles for correct interpretation. 
Standardized test scores often fall into this category. 
Table 15 gives information about the state mean scores 
on the National Assessment of Educational Progress 
(NAEP) 2000 Grade 4 mathematics scores for Louisi-
ana and Kentucky. Even though these scores are based 
on a sample of students, these are the scores assigned 
to the states, and consequently, they can be considered 
observational data from that point of view. 

To see if students understand the table, it is informa-
tive to ask them to fi ll in a few omitted entries. 

Example 7: Comparing Mathematics Scores—
An Observational Study

Overall 
Mean

Mean for 
Whites

Mean for 
Non-

whites

% White

Louisiana 217.96 229.51 204.94

Kentucky 220.99 224.17 87

Table 15: NAEP 2000 Scores in Mathematics
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→ Fill in the two missing entries in the table
 (53% and 199.71).

More substantive questions involve the seeming con-
tradictions that may occur in data of this type. They 
might be phrased as follows.
→ For the two states, compare the overall means. 
 Compare the means for whites. Compare the 
 means for nonwhites. What do you observe?
→ Explain why the reversals in direction take place 
 once the means are separated into racial groups. 

It is genuinely surprising to students that data summa-
ries (means in this case) can go in one direction in the 
aggregate but can go in the opposite direction for each 
subcategory when disaggregated. This phenomenon is 
called Simpson’s Paradox. 

Observational studies are the only option for situ-
ations in which it is impossible or unethical to ran-
domly assign treatments to subjects. Such situations 
are a common occurrence in the study of causes of 
diseases. A classical example from this fi eld is the re-
lationship between smoking and lung cancer, which 
prompted heated debates during the 1950s and 1960s. 
Society will not condone the notion of assigning some 
people to be smokers and others to be nonsmokers in 
an experiment to see if smoking causes lung cancer. 
So the evidence has to be gathered from observing the 

world as it is. The data collection process still can be 
designed in clever ways to obtain as much information 
as possible. 

Here is an example from the smoking versus lung 
cancer debates. A group of 649 men with lung cancer 
was identifi ed from a certain population in England. 
A control group of the same size was established by 
matching these patients with other men from the 
same population who did not have lung cancer. The 
matching was on background variables such as eth-
nicity, age, and socioeconomic status. (This is called a 
case-control study.) The objective, then, is to compare 
the rate of smoking among those with lung cancer to 
the rate for those without cancer.

First, make sure students understand the nature of 
the data in Table 16. Does this show, for example, 
that there was a very high percentage of smokers in 
England around 1950? The rate of smoking in these 
groups was (647/649) = .997 for the cancer patients 
and (622/649) = .958 for the controls. If these data 
had resulted from a random assignment or selection, 
the difference of about 4 percentage points would be 

Lung Cancer 
Cases

Controls Totals

Smokers 647 622 1,269

Non-
smokers

    2   27      29

Table 16: Cigarette Smoking and Lung Cancer

Example 8: Observational Study—Toward Establishing
Causation
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statistically signifi cant (by methods discussed earlier), 
which gives the researcher reason to suspect there 
is an association here that cannot be attributed to 
chance alone. Another way to look at these data is 
to think about randomly selecting one person from 
among the smokers and one person from among the 
nonmokers. The smoker has a chance of 647/1269 
= .51 of being in the lung cancer column, while the 
nonsmoker has only a 2/29 = .07 chance of being 
there. This is evidence of strong association between 
smoking and lung cancer, but it is not conclusive 
evidence that smoking is, in fact, the cause of the 
lung cancer. (This is a good place to have students 
speculate about other possible causes that could have 
resulted in data like these.) 

Another step in establishing association in observa-
tional studies is to see if the increase in exposure to 
the risk factor produces an increase in incidence of 
the disease. This was done with the same case-control 
study by looking at the level of smoking for each per-
son, producing Table 17. 

The term “probability” is used in the same sense as 
above. If a person is randomly selected from the 1–14 
level, the chance that the person falls into the can-
cer column is .45, and so on for the other rows. The 
important result is that these “probabilities” increase 
with the level of smoking. This is evidence that an in-
crease in the disease rate is associated with an increase 
in cigarette smoking.

Even with this additional evidence, students should 
understand that a cause and effect relationship cannot 
be established from an observational study. The main 
reason for this is that these observational studies are 
subject to bias in the selection of patients and controls. 
Another study of this type could have produced a dif-
ferent result. (As it turned out, many studies of this 
type produced remarkably similar results. That, cou-
pled with laboratory experiments on animals that es-
tablished a biological link between smoking and lung 
cancer, eventually settled the issue for most people.)

The Appendix to Level C contains more examples of 
the types discussed in this section.

The Role of Probability in Statistics

Teachers and students must understand that sta-
tistics and probability are not the same. Statistics 
uses probability, much as physics uses calculus, but 
only certain aspects of probability make their way 
into statistics. The concepts of probability needed 
for introductory statistics (with emphasis on data 

Cigarettes/
Day

Lung Cancer 
Cases

Controls Probability

0     2    27 0.07

1–14 283 346 0.45

15–24 196 190 0.51

25+ 168    84 0.67

Table 17: Level of Cigarette Smoking and Lung Cancer
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analysis) include relative frequency interpretations of 
data, probability distributions as models of popula-
tions of measurements, an introduction to the normal 
distribution as a model for sampling distributions, and 
the basic ideas of expected value and random varia-
tion. Counting rules, most specialized distributions 
and the development of theorems on the mathematics 
of probability should be left to areas of discrete math-
ematics and/or calculus. 

Understanding the reasoning of statistical inference 
requires a basic understanding of some important 
ideas in probability. Students should be able to:
→ Understand probability as a long-run relative 
 frequency;
→ Understand the concept of independence; and
→ Understand how probability can be used in 
 making decisions and drawing conclusions.

In addition, because so many of the standard inferential 
procedures are based on the normal distribution, students 
should be able to evaluate probabilities using the normal 
distribution (preferably with the aid of technology).

Probability is an attempt to quantify uncertainty. The 
fact that the long-run behavior of a random process is 
predictable leads to the long-run relative frequency in-
terpretation of probability. Students should be able to 
interpret the probability of an outcome as the long-run 
proportion of the time the outcome should occur if 
the random experiment is repeated a large number of 

times. This long-run relative frequency interpretation 
of probability also provides the justifi cation for using 
simulation to estimate probabilities. After observing a 
large number of chance outcomes, the observed pro-
portion of occurrence for the outcome of interest can 
be used as an estimate of the relevant probability.

Students also need to understand the concept of in-
dependence. Two outcomes are independent if our 
assessment of the chance that one outcome occurs 
is not affected by knowledge that the other outcome 
has occurred. Particularly important to statistical 
inference is the notion of independence in sampling 
settings. Random selection (with replacement) from 
a population ensures the observations in a sample are 
independent. For example, knowing the value of the 
third observation does not provide any information 
about the value of the fi fth (or any other) observation. 
Many of the methods used to draw conclusions about 
a population based on data from a sample require the 
observations in a sample to be independent.

Most importantly, the concepts of probability play 
a critical role in developing statistical methods that 
make it possible to make inferences based on sample 
data and to assess our confi dence in such conclusions.

To clarify the connection between data analysis and 
probability, we will return to the key ideas presented 
in the inference section. Suppose an opinion poll 
shows 60% of sampled voters in favor of a proposed 
new law. A basic statistical question is, “How far 

Probability
is an attempt
to quantify
uncertainty.

“
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might this sample proportion be from the true 
population proportion?” That the difference between 
the estimate and the truth is less than the margin of 
error approximately 95% of the time is based on a 
probabilistic understanding of the sampling distribu-
tion of sample proportions. For large random samples, 
this relative frequency distribution of sample propor-
tions is approximately normal. Thus, students should 
be familiar with how to use appropriate technology to 
fi nd areas under the normal curve.

Suppose an experimenter divides subjects into two 
groups, with one group receiving a new treatment 
for a disease and the other receiving a placebo. If the 
treatment group does better than the placebo group, 
a basic statistical question is, “Could the difference 
have been a result of chance variation alone?” The 
randomization allows us to determine the probabil-
ity of a difference being greater than that observed 
under the assumption of no treatment effect. In turn, 
this probability allows us to draw a meaningful con-
clusion from the data. (A proposed model is rejected 
as implausible, not primarily because the probability 
of an observed outcome is small, but rather because 
it is in the tail of a distribution.) An adequate answer 
to the above question also requires knowledge of the 
context in which the question was asked and a sound 
experimental design. This reliance on context and 
design is one of the basic differences between statis-
tics and mathematics.

As demonstrated earlier, the sampling distribution of a 
sample mean will be approximately normal under ran-
dom sampling, as long as the sample size is reasonably 
large. The mean and standard deviation of this distri-
bution usually are unknown (introducing the need for 
inference), but sometimes these parameter values can 
be determined from basic information about the pop-
ulation being sampled. To compute these parameter 
values, students will need some knowledge of expected 
values, as demonstrated next. 

According to the March 2000 Current Population 
Survey of the U.S. Census Bureau, the distribution of 
family size is as given by Table 18. (A family is defi ned 
as two or more related people living together. The 
number “7” really is the category “7 or more,” but 
very few families are larger than 7.) 

Notice fi rst the connection between data and prob-
ability: These proportions (really estimates from a 
very large sample survey) can be taken as approximate 

Family Size, x Proportion, p(x)

2 0.437

3 0.223

4 0.201

5 0.091

6 0.031

7 0.017

Table 18: Family Size Distribution
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probabilities for the next survey. In other words, if 
someone randomly selects a U.S. family for a new 
survey, the probability that it will have three mem-
bers is about .223. 

Second, note that we now can fi nd the mean and stan-
dard deviation of a random variable (call it X), defi ned 
as the number of people in a randomly selected family. 
The mean, sometimes called the expected value of X and 
denoted by E(X), is found using the formula: 

( ) ( )
all possible

xvalues

E X x p x= ⋅∑

which turns out to be 3.11 for this distribution. If the 
next survey contains 100 randomly selected families, 
then the survey is expected to produce 3.11 members 
per family, on the average, for an estimated total of 
311 people in the 100 families altogether. 

The standard deviation of X, SD(X), is the square 
root of the variance of X, V(X), given by:

2( ) [ ( )] ( )
all possible

xvalues

V X x E X p x= − ⋅∑

For the family size data, V(X) = 1.54 and SD(X) = 1.24. 

Third, these facts can be assembled to describe the ex-
pected sampling distribution of the mean family size 
in a random sample of 100 families yet to be taken. 
That sampling distribution will be approximately 

normal in shape, centering at 3.11 with a standard de-
viation of 1.24/ 100  = 0.124. This would be useful 
information for the person designing the next survey. 

In short, the relative frequency defi nition of prob-
ability, the normal distribution, and the concept of ex-
pected value are the keys to understanding sampling 
distributions and statistical inference. 

Summary of Level C

Students at Level C should become adept at using 
statistical tools as a natural part of the investigative 
process. Once an appropriate plan for collecting data 
has been implemented and the resulting data are in 
hand, the next step usually is to summarize the data 
using graphical displays and numerical summaries. At 
Level C, students should be able to select summary 
techniques appropriate for the type of data available, 
produce these summaries, and describe in context the 
important characteristics of the data. Students will 
use the graphical and numerical summaries learned at 
Levels A and B, but should be able to provide a more 
sophisticated interpretation that integrates the context 
and objectives of the study.

At Level C, students also should be able to draw con-
clusions from data and support these conclusions us-
ing statistical evidence. Students should see statistics as 
providing powerful tools that enable them to answer 
questions and to make informed decisions. Students 
also should understand the limitations of conclusions 
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based on data from sample surveys and experiments, 
and should be able to quantify uncertainty associated 
with these conclusions using margin of error and re-
lated properties of sampling distributions.




