

DOE Applied Mathematics Research Program - Overview

Joint Statistical Meeting

Funding Opportunities for Statisticians and Data Scientists

August 7, 2022

Steven Lee Department of Energy, Office of Science Office of Advanced Scientific Computing Research Program Manager in Applied Mathematics

DOE Office of Science Programs

• Understanding, predicting, and ultimately controlling matter and energy at the electronic, atomic, and molecular levels
 Extending the frontiers of science through world leading computational science, supercomputers, and networking
Understanding complex biological and environmental systems
 Studying matter at very high temperatures and densities and the scientific foundations for fusion
• Exploring the elementary constituents of matter and energy, the interactions between them, and the nature of space and time
• Discovering, exploring, and understanding all forms of nuclear matter

* Also Includes the SBIR/STTR Programs and Workforce Development

Randomized Algorithms for Scientific Computing: AI & Data Science at Scale

Purpose: Workshop to explore the **use of randomness** as a foundation & strategy for high-performance scientific computing

Randomized algorithms are transforming scientific computing in

- Al & Deep Learning: Stochastic Gradient Descent
- Data reduction: Compressive Sensing, Random Projections
- Massive & streaming data analysis: Randomized Numerical Linear Algebra

Fundamental properties of randomness can be harnessed for other massive data & post-Moore **computational grand challenges**

- High computational complexity and the development of efficient algorithms
- High data dimensionality and finding sparse representations for data from user facilities
- Better algorithm scalability for low-power, high-performance edge computing
- Reduced ill-conditioning and sensitivity for inverse problems
- Improved algorithm reliability and robustness to noise

Foundational long-term research & plans are needed for **hybrid algorithms** that anticipate massive data & post-Moore computing challenges

Co-Chairs: Aydin Buluc (LBNL), Tammy Kolda (Sandia), Stefan Wild (ANL) **Workshop Report**: <u>https://www.osti.gov/biblio/1807223</u> Virtual Meetings: December 2-3, 2020 January 6-7, 2021

F SCIENCE OFFICE OF SCIENCE OFFICE OFFICE

DOE Applied Mathematics - Recent Funding Opportunities in Data Science

FOA	Title
22-2722	Randomized Algorithms for Combinatorial Scientific Computing
21-2497	EXPRESS: Randomized Algorithms for Extreme-Scale Science
21-2493	Data-Intensive Scientific Machine Learning
21-2501	Data Reduction for Science

DOE Early Career Research Program – Posted Annually

• Randomized and hybrid algorithms is a priority topic within ASCR Applied Mathematics

Sign up for the Office of Science email service -

https://science.osti.gov/ascr/Funding-Opportunities

